File size: 6,209 Bytes
94f7497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import warnings
warnings.simplefilter('ignore')
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn import metrics
import transformers
import torch
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from transformers import DistilBertTokenizer, DistilBertModel
import logging
logging.basicConfig(level=logging.ERROR)

# # Setting up the device for GPU usage

from torch import cuda
device = 'cuda' if cuda.is_available() else 'cpu'

def hamming_score(y_true, y_pred, normalize=True, sample_weight=None):
    acc_list = []
    for i in range(y_true.shape[0]):
        set_true = set( np.where(y_true[i])[0] )
        set_pred = set( np.where(y_pred[i])[0] )
        tmp_a = None
        if len(set_true) == 0 and len(set_pred) == 0:
            tmp_a = 1
        else:
            tmp_a = len(set_true.intersection(set_pred))/\
                    float( len(set_true.union(set_pred)) )
        acc_list.append(tmp_a)
    return np.mean(acc_list)

data = pd.read_csv('Vulnerable code dataset 15_12_22 - Training.csv')
#data.drop(['source_name'], inplace=True, axis=1)
new_df = pd.DataFrame()
new_df['text'] = data['text']
new_df['labels'] = data['label']
new_df.head()

# Sections of config

# Defining some key variables that will be used later on in the training
MAX_LEN = 128
TRAIN_BATCH_SIZE = 4
VALID_BATCH_SIZE = 4
EPOCHS = 1
LEARNING_RATE = 1e-05
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)

class MultiLabelDataset(Dataset):

    def __init__(self, dataframe, tokenizer, max_len):
        self.tokenizer = tokenizer
        self.data = dataframe
        self.text = dataframe.text
        self.targets = self.data.labels
        self.max_len = max_len

    def __len__(self):
        return len(self.text)

    def __getitem__(self, index):
        text = str(self.text[index])
        text = " ".join(text.split())

        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            pad_to_max_length=True,
            return_token_type_ids=True
        )
        ids = inputs['input_ids']
        mask = inputs['attention_mask']
        token_type_ids = inputs["token_type_ids"]


        return {
            'ids': torch.tensor(ids, dtype=torch.long),
            'mask': torch.tensor(mask, dtype=torch.long),
            'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
            #'targets': torch.tensor(self.targets[index], dtype=torch.float)
        }

train_size = 0.8
train_data=new_df.sample(frac=train_size,random_state=200)
test_data=new_df.drop(train_data.index).reset_index(drop=True)
train_data = train_data.reset_index(drop=True)


print("FULL Dataset: {}".format(new_df.shape))
print("TRAIN Dataset: {}".format(train_data.shape))
print("TEST Dataset: {}".format(test_data.shape))

training_set = MultiLabelDataset(train_data, tokenizer, MAX_LEN)
testing_set = MultiLabelDataset(test_data, tokenizer, MAX_LEN)

train_params = {'batch_size': TRAIN_BATCH_SIZE,
                'shuffle': True,
                'num_workers': 0
                }

test_params = {'batch_size': VALID_BATCH_SIZE,
                'shuffle': True,
                'num_workers': 0
                }

training_loader = DataLoader(training_set, **train_params)
testing_loader = DataLoader(testing_set, **test_params)

# Creating the customized model, by adding a drop out and a dense layer on top of distil bert to get the final output for the model. 

class DistilBERTClass(torch.nn.Module):
    def __init__(self):
        super(DistilBERTClass, self).__init__()
        self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
        self.pre_classifier = torch.nn.Linear(768, 768)
        self.dropout = torch.nn.Dropout(0.1)
        self.classifier = torch.nn.Linear(768, 6)

    def forward(self, input_ids, attention_mask, token_type_ids):
        output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
        hidden_state = output_1[0]
        pooler = hidden_state[:, 0]
        pooler = self.pre_classifier(pooler)
        pooler = torch.nn.Tanh()(pooler)
        pooler = self.dropout(pooler)
        output = self.classifier(pooler)
        return output

model = DistilBERTClass()
model.to(device)

def loss_fn(outputs, targets):
    return torch.nn.BCEWithLogitsLoss()(outputs, targets)

optimizer = torch.optim.Adam(params =  model.parameters(), lr=LEARNING_RATE)

def train(epoch):
    model.train()
    for _,data in tqdm(enumerate(training_loader, 0)):
        ids = data['ids'].to(device, dtype = torch.long)
        mask = data['mask'].to(device, dtype = torch.long)
        token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
        #targets = data['targets'].to(device, dtype = torch.float)

        outputs = model(ids, mask, token_type_ids)

        optimizer.zero_grad()
        #loss = loss_fn(outputs)
        #if _%5000==0:
        #    print(f'Epoch: {epoch}, Loss:  {loss.item()}')

        #loss.backward()
        #optimizer.step()

#for epoch in range(EPOCHS):
#    train(epoch)

def validation(testing_loader):
    model.eval()
    fin_targets=[]
    fin_outputs=[]
    with torch.no_grad():
        for _, data in tqdm(enumerate(testing_loader, 0)):
            ids = data['ids'].to(device, dtype = torch.long)
            mask = data['mask'].to(device, dtype = torch.long)
            token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
            # targets = data['targets'].to(device, dtype = torch.float)
            outputs = model(ids, mask, token_type_ids)
            #fin_targets.extend(targets.cpu().detach().numpy().tolist())
            fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
    return fin_outputs, fin_targets

outputs = validation(testing_loader)

print(outputs)

#final_outputs = np.array(outputs) >=0.5

#val_hamming_loss = metrics.hamming_loss(final_outputs)
#val_hamming_score = hamming_score(np.array(final_outputs))

#print(f"Hamming Score = {val_hamming_score}")
#print(f"Hamming Loss = {val_hamming_loss}")