File size: 6,209 Bytes
94f7497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import warnings
warnings.simplefilter('ignore')
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn import metrics
import transformers
import torch
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from transformers import DistilBertTokenizer, DistilBertModel
import logging
logging.basicConfig(level=logging.ERROR)
# # Setting up the device for GPU usage
from torch import cuda
device = 'cuda' if cuda.is_available() else 'cpu'
def hamming_score(y_true, y_pred, normalize=True, sample_weight=None):
acc_list = []
for i in range(y_true.shape[0]):
set_true = set( np.where(y_true[i])[0] )
set_pred = set( np.where(y_pred[i])[0] )
tmp_a = None
if len(set_true) == 0 and len(set_pred) == 0:
tmp_a = 1
else:
tmp_a = len(set_true.intersection(set_pred))/\
float( len(set_true.union(set_pred)) )
acc_list.append(tmp_a)
return np.mean(acc_list)
data = pd.read_csv('Vulnerable code dataset 15_12_22 - Training.csv')
#data.drop(['source_name'], inplace=True, axis=1)
new_df = pd.DataFrame()
new_df['text'] = data['text']
new_df['labels'] = data['label']
new_df.head()
# Sections of config
# Defining some key variables that will be used later on in the training
MAX_LEN = 128
TRAIN_BATCH_SIZE = 4
VALID_BATCH_SIZE = 4
EPOCHS = 1
LEARNING_RATE = 1e-05
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
class MultiLabelDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_len):
self.tokenizer = tokenizer
self.data = dataframe
self.text = dataframe.text
self.targets = self.data.labels
self.max_len = max_len
def __len__(self):
return len(self.text)
def __getitem__(self, index):
text = str(self.text[index])
text = " ".join(text.split())
inputs = self.tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=self.max_len,
pad_to_max_length=True,
return_token_type_ids=True
)
ids = inputs['input_ids']
mask = inputs['attention_mask']
token_type_ids = inputs["token_type_ids"]
return {
'ids': torch.tensor(ids, dtype=torch.long),
'mask': torch.tensor(mask, dtype=torch.long),
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
#'targets': torch.tensor(self.targets[index], dtype=torch.float)
}
train_size = 0.8
train_data=new_df.sample(frac=train_size,random_state=200)
test_data=new_df.drop(train_data.index).reset_index(drop=True)
train_data = train_data.reset_index(drop=True)
print("FULL Dataset: {}".format(new_df.shape))
print("TRAIN Dataset: {}".format(train_data.shape))
print("TEST Dataset: {}".format(test_data.shape))
training_set = MultiLabelDataset(train_data, tokenizer, MAX_LEN)
testing_set = MultiLabelDataset(test_data, tokenizer, MAX_LEN)
train_params = {'batch_size': TRAIN_BATCH_SIZE,
'shuffle': True,
'num_workers': 0
}
test_params = {'batch_size': VALID_BATCH_SIZE,
'shuffle': True,
'num_workers': 0
}
training_loader = DataLoader(training_set, **train_params)
testing_loader = DataLoader(testing_set, **test_params)
# Creating the customized model, by adding a drop out and a dense layer on top of distil bert to get the final output for the model.
class DistilBERTClass(torch.nn.Module):
def __init__(self):
super(DistilBERTClass, self).__init__()
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
self.pre_classifier = torch.nn.Linear(768, 768)
self.dropout = torch.nn.Dropout(0.1)
self.classifier = torch.nn.Linear(768, 6)
def forward(self, input_ids, attention_mask, token_type_ids):
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
hidden_state = output_1[0]
pooler = hidden_state[:, 0]
pooler = self.pre_classifier(pooler)
pooler = torch.nn.Tanh()(pooler)
pooler = self.dropout(pooler)
output = self.classifier(pooler)
return output
model = DistilBERTClass()
model.to(device)
def loss_fn(outputs, targets):
return torch.nn.BCEWithLogitsLoss()(outputs, targets)
optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
def train(epoch):
model.train()
for _,data in tqdm(enumerate(training_loader, 0)):
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
#targets = data['targets'].to(device, dtype = torch.float)
outputs = model(ids, mask, token_type_ids)
optimizer.zero_grad()
#loss = loss_fn(outputs)
#if _%5000==0:
# print(f'Epoch: {epoch}, Loss: {loss.item()}')
#loss.backward()
#optimizer.step()
#for epoch in range(EPOCHS):
# train(epoch)
def validation(testing_loader):
model.eval()
fin_targets=[]
fin_outputs=[]
with torch.no_grad():
for _, data in tqdm(enumerate(testing_loader, 0)):
ids = data['ids'].to(device, dtype = torch.long)
mask = data['mask'].to(device, dtype = torch.long)
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
# targets = data['targets'].to(device, dtype = torch.float)
outputs = model(ids, mask, token_type_ids)
#fin_targets.extend(targets.cpu().detach().numpy().tolist())
fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
return fin_outputs, fin_targets
outputs = validation(testing_loader)
print(outputs)
#final_outputs = np.array(outputs) >=0.5
#val_hamming_loss = metrics.hamming_loss(final_outputs)
#val_hamming_score = hamming_score(np.array(final_outputs))
#print(f"Hamming Score = {val_hamming_score}")
#print(f"Hamming Loss = {val_hamming_loss}") |