maxdunhill
commited on
Commit
•
93d8d6c
1
Parent(s):
94f7497
Upload classifier.py
Browse filesMy best attempt at modifying:
https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb#scrollTo=kT5-oqMPB6vp
For the purpose of detecting vulnerable/non vulnerable code. Functionality all the way up to Validation section works.
When trying to run Validation section, I got error message: "TypeError: new(): invalid data type 'str'"
Making file available, should a member of the community wish to take it upon themselves to get the validation functionality to run.
- classifier.py +185 -0
classifier.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.simplefilter('ignore')
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from tqdm import tqdm
|
6 |
+
from sklearn import metrics
|
7 |
+
import transformers
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
|
10 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
11 |
+
import logging
|
12 |
+
logging.basicConfig(level=logging.ERROR)
|
13 |
+
|
14 |
+
# # Setting up the device for GPU usage
|
15 |
+
|
16 |
+
from torch import cuda
|
17 |
+
device = 'cuda' if cuda.is_available() else 'cpu'
|
18 |
+
|
19 |
+
def hamming_score(y_true, y_pred, normalize=True, sample_weight=None):
|
20 |
+
acc_list = []
|
21 |
+
for i in range(y_true.shape[0]):
|
22 |
+
set_true = set( np.where(y_true[i])[0] )
|
23 |
+
set_pred = set( np.where(y_pred[i])[0] )
|
24 |
+
tmp_a = None
|
25 |
+
if len(set_true) == 0 and len(set_pred) == 0:
|
26 |
+
tmp_a = 1
|
27 |
+
else:
|
28 |
+
tmp_a = len(set_true.intersection(set_pred))/\
|
29 |
+
float( len(set_true.union(set_pred)) )
|
30 |
+
acc_list.append(tmp_a)
|
31 |
+
return np.mean(acc_list)
|
32 |
+
|
33 |
+
data = pd.read_csv('Vulnerable code dataset 15_12_22 - Training.csv')
|
34 |
+
#data.drop(['source_name'], inplace=True, axis=1)
|
35 |
+
new_df = pd.DataFrame()
|
36 |
+
new_df['text'] = data['text']
|
37 |
+
new_df['labels'] = data['label']
|
38 |
+
new_df.head()
|
39 |
+
|
40 |
+
|
41 |
+
# Sections of config
|
42 |
+
|
43 |
+
# Defining some key variables that will be used later on in the training
|
44 |
+
MAX_LEN = 128
|
45 |
+
TRAIN_BATCH_SIZE = 4
|
46 |
+
VALID_BATCH_SIZE = 4
|
47 |
+
EPOCHS = 1
|
48 |
+
LEARNING_RATE = 1e-05
|
49 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
|
50 |
+
|
51 |
+
class MultiLabelDataset(Dataset):
|
52 |
+
|
53 |
+
def __init__(self, dataframe, tokenizer, max_len):
|
54 |
+
self.tokenizer = tokenizer
|
55 |
+
self.data = dataframe
|
56 |
+
self.text = dataframe.text
|
57 |
+
self.targets = self.data.labels
|
58 |
+
self.max_len = max_len
|
59 |
+
|
60 |
+
def __len__(self):
|
61 |
+
return len(self.text)
|
62 |
+
|
63 |
+
def __getitem__(self, index):
|
64 |
+
text = str(self.text[index])
|
65 |
+
text = " ".join(text.split())
|
66 |
+
|
67 |
+
inputs = self.tokenizer.encode_plus(
|
68 |
+
text,
|
69 |
+
None,
|
70 |
+
add_special_tokens=True,
|
71 |
+
max_length=self.max_len,
|
72 |
+
pad_to_max_length=True,
|
73 |
+
return_token_type_ids=True
|
74 |
+
)
|
75 |
+
ids = inputs['input_ids']
|
76 |
+
mask = inputs['attention_mask']
|
77 |
+
token_type_ids = inputs["token_type_ids"]
|
78 |
+
|
79 |
+
|
80 |
+
return {
|
81 |
+
'ids': torch.tensor(ids, dtype=torch.long),
|
82 |
+
'mask': torch.tensor(mask, dtype=torch.long),
|
83 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
84 |
+
'targets': torch.tensor(self.targets[index], dtype=torch.float)
|
85 |
+
}
|
86 |
+
|
87 |
+
train_size = 0.8
|
88 |
+
train_data=new_df.sample(frac=train_size,random_state=200)
|
89 |
+
test_data=new_df.drop(train_data.index).reset_index(drop=True)
|
90 |
+
train_data = train_data.reset_index(drop=True)
|
91 |
+
|
92 |
+
|
93 |
+
print("FULL Dataset: {}".format(new_df.shape))
|
94 |
+
print("TRAIN Dataset: {}".format(train_data.shape))
|
95 |
+
print("TEST Dataset: {}".format(test_data.shape))
|
96 |
+
|
97 |
+
training_set = MultiLabelDataset(train_data, tokenizer, MAX_LEN)
|
98 |
+
testing_set = MultiLabelDataset(test_data, tokenizer, MAX_LEN)
|
99 |
+
|
100 |
+
train_params = {'batch_size': TRAIN_BATCH_SIZE,
|
101 |
+
'shuffle': True,
|
102 |
+
'num_workers': 0
|
103 |
+
}
|
104 |
+
|
105 |
+
test_params = {'batch_size': VALID_BATCH_SIZE,
|
106 |
+
'shuffle': True,
|
107 |
+
'num_workers': 0
|
108 |
+
}
|
109 |
+
|
110 |
+
training_loader = DataLoader(training_set, **train_params)
|
111 |
+
testing_loader = DataLoader(testing_set, **test_params)
|
112 |
+
|
113 |
+
# Creating the customized model, by adding a drop out and a dense layer on top of distil bert to get the final output for the model.
|
114 |
+
|
115 |
+
class DistilBERTClass(torch.nn.Module):
|
116 |
+
def __init__(self):
|
117 |
+
super(DistilBERTClass, self).__init__()
|
118 |
+
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
119 |
+
self.pre_classifier = torch.nn.Linear(768, 768)
|
120 |
+
self.dropout = torch.nn.Dropout(0.1)
|
121 |
+
self.classifier = torch.nn.Linear(768, 6)
|
122 |
+
|
123 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
124 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
125 |
+
hidden_state = output_1[0]
|
126 |
+
pooler = hidden_state[:, 0]
|
127 |
+
pooler = self.pre_classifier(pooler)
|
128 |
+
pooler = torch.nn.Tanh()(pooler)
|
129 |
+
pooler = self.dropout(pooler)
|
130 |
+
output = self.classifier(pooler)
|
131 |
+
return output
|
132 |
+
|
133 |
+
model = DistilBERTClass()
|
134 |
+
model.to(device)
|
135 |
+
|
136 |
+
def loss_fn(outputs, targets):
|
137 |
+
return torch.nn.BCEWithLogitsLoss()(outputs, targets)
|
138 |
+
|
139 |
+
optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
|
140 |
+
|
141 |
+
def train(epoch):
|
142 |
+
model.train()
|
143 |
+
for _,data in tqdm(enumerate(training_loader, 0)):
|
144 |
+
ids = data['ids'].to(device, dtype = torch.long)
|
145 |
+
mask = data['mask'].to(device, dtype = torch.long)
|
146 |
+
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
|
147 |
+
targets = data['targets'].to(device, dtype = torch.float)
|
148 |
+
|
149 |
+
outputs = model(ids, mask, token_type_ids)
|
150 |
+
|
151 |
+
optimizer.zero_grad()
|
152 |
+
loss = loss_fn(outputs, targets)
|
153 |
+
if _%5000==0:
|
154 |
+
print(f'Epoch: {epoch}, Loss: {loss.item()}')
|
155 |
+
|
156 |
+
loss.backward()
|
157 |
+
optimizer.step()
|
158 |
+
|
159 |
+
for epoch in range(EPOCHS):
|
160 |
+
train(epoch)
|
161 |
+
|
162 |
+
def validation(testing_loader):
|
163 |
+
model.eval()
|
164 |
+
fin_targets=[]
|
165 |
+
fin_outputs=[]
|
166 |
+
with torch.no_grad():
|
167 |
+
for _, data in tqdm(enumerate(testing_loader, 0)):
|
168 |
+
ids = data['ids'].to(device, dtype = torch.long)
|
169 |
+
mask = data['mask'].to(device, dtype = torch.long)
|
170 |
+
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
|
171 |
+
targets = data['targets'].to(device, dtype = torch.float)
|
172 |
+
outputs = model(ids, mask, token_type_ids)
|
173 |
+
fin_targets.extend(targets.cpu().detach().numpy().tolist())
|
174 |
+
fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
|
175 |
+
return fin_outputs, fin_targets
|
176 |
+
|
177 |
+
outputs, targets = validation(testing_loader)
|
178 |
+
|
179 |
+
final_outputs = np.array(outputs) >=0.5
|
180 |
+
|
181 |
+
val_hamming_loss = metrics.hamming_loss(targets, final_outputs)
|
182 |
+
val_hamming_score = hamming_score(np.array(targets), np.array(final_outputs))
|
183 |
+
|
184 |
+
print(f"Hamming Score = {val_hamming_score}")
|
185 |
+
print(f"Hamming Loss = {val_hamming_loss}")
|