--- license: mit datasets: - ethical-spectacle/biased-corpus language: - en metrics: - f1(0.8998) - precision - recall() library_name: transformers co2_eq_emissions: emissions: 10 source: Code Carbon training_type: fine-tuning geographical_location: Albany, New York hardware_used: T4 base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification tags: - Social Bias --- ## How to Use ``` classifier = pipeline("text-classification", model="maximuspowers/bias-type-classifier") // pass in return_all_scores=True for multi-label result = classifier("Tall people are so clumsy") ``` ### Example Result ```json [ { "label": "physical", "score": 0.9972801208496094 } ] ``` This model was trained on a [synthetic dataset](https://huggingface.co/datasets/ethical-spectacle/biased-corpus) of biased statements and questions, generated by Mistal 7B as part of the [GUS-Net paper](https://www.linkedin.com/posts/maximuspowers_gus-net-social-bias-ner-model-activity-7245547070978240512-QUqO). ### Model Performance: | Label | F1 Score | Precision | Recall | |-----------------|----------|-----------|--------| | **Macro Average** | **0.8998** | **0.9213** | **0.8807** | | racial | 0.8613 | 0.9262 | 0.8049 | | religious | 0.9655 | 0.9716 | 0.9595 | | gender | 0.9160 | 0.9099 | 0.9223 | | age | 0.9185 | 0.9683 | 0.8737 | | nationality | 0.9083 | 0.9053 | 0.9113 | | sexuality | 0.9304 | 0.9484 | 0.9131 | | socioeconomic | 0.8273 | 0.8727 | 0.7864 | | educational | 0.8791 | 0.9091 | 0.8511 | | disability | 0.8713 | 0.8762 | 0.8665 | | political | 0.9127 | 0.8914 | 0.9351 | | physical | 0.9069 | 0.9547 | 0.8635 | ### Training Params: **Learning Rate:** 5e-5 **Batch Size:** 16 **Epochs:** 3