johannhartmann
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
- de
|
7 |
+
- fr
|
8 |
+
- it
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
---
|
11 |
+
|
12 |
+
![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png)
|
13 |
+
|
14 |
+
# Occiglot-7B-EU5-Instruct
|
15 |
+
|
16 |
+
> A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident).
|
17 |
+
>
|
18 |
+
|
19 |
+
**Occiglot-7B-EU5-Instruct** is a the instruct version of [occiglot-7b-eu5](https://huggingface.co/occiglot/occiglot-7b-eu5/), a generative language model with 7B parameters supporting the top-5 EU languages (English, Spanish, French, German, and Italian) and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/).
|
20 |
+
It was trained on 400M tokens of additional multilingual and code instructions.
|
21 |
+
Note that the model was not safety aligned and might generate problematic outputs.
|
22 |
+
|
23 |
+
This is the first release of an ongoing open research project for multilingual language models.
|
24 |
+
If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!**
|
25 |
+
|
26 |
+
|
27 |
+
### Model details
|
28 |
+
|
29 |
+
- **Instruction tuned from:** [occiglot-7b-eu5](https://huggingface.co/occiglot/occiglot-7b-eu5)
|
30 |
+
- **Model type:** Causal decoder-only transformer language model
|
31 |
+
- **Languages:** English, Spanish, French, German, Italian, and code.
|
32 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
|
33 |
+
- **Compute resources:** [DFKI cluster](https://www.dfki.de/en/web)
|
34 |
+
- **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
|
35 |
+
- **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology)
|
36 |
+
- **Contact:** [Discord](https://discord.gg/wUpvYs4XvM)
|
37 |
+
|
38 |
+
### How to use
|
39 |
+
|
40 |
+
The model was trained using the chatml instruction template. You can use the transformers chat template feature for interaction.
|
41 |
+
Since the generation relies on some randomness, we
|
42 |
+
set a seed for reproducibility:
|
43 |
+
|
44 |
+
```python
|
45 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM, set_seed
|
46 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("occiglot/occiglot-7b-eu5-instruct")
|
47 |
+
>>> model = MistralForCausalLM.from_pretrained('occiglot/occiglot-7b-eu5-instruct') # You may want to use bfloat16 and/or move to GPU here
|
48 |
+
>>> set_seed(42)
|
49 |
+
>>> messages = [
|
50 |
+
>>> {"role": "system", 'content': 'You are a helpful assistant. Please give short and concise answers.'},
|
51 |
+
>>> {"role": "user", "content": "Wer ist der deutsche Bundeskanzler?"},
|
52 |
+
>>> ]
|
53 |
+
>>> tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=False, return_tensors='pt',)
|
54 |
+
>>> set_seed(42)
|
55 |
+
>>> outputs = model.generate(tokenized_chat.to('cuda'), max_new_tokens=200,)
|
56 |
+
>>> tokenizer.decode(out[0][len(tokenized_chat[0]):])
|
57 |
+
'Der deutsche Bundeskanzler ist Olaf Scholz.'
|
58 |
+
```
|
59 |
+
|
60 |
+
## Dataset
|
61 |
+
|
62 |
+
The training data was split evenly amongst the 5 languages based on the total number of tokens. We would like to thank [Disco Research](https://huggingface.co/DiscoResearch), [Jan Philipp Harries](https://huggingface.co/jphme), and [Björn Plüster](https://huggingface.co/bjoernp) for making their dataset available to us.
|
63 |
+
|
64 |
+
|
65 |
+
**English and Code**
|
66 |
+
- [Open-Hermes-2B](https://huggingface.co/datasets/teknium/OpenHermes-2.5)
|
67 |
+
|
68 |
+
**German**
|
69 |
+
- [DiscoLM German Dataset](https://huggingface.co/DiscoResearch) includes the publicly available [germanrag](https://huggingface.co/datasets/DiscoResearch/germanrag) dataset
|
70 |
+
- [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (German subset)
|
71 |
+
- [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (German subset)
|
72 |
+
|
73 |
+
**Spanish**
|
74 |
+
- [Mentor-ES](https://huggingface.co/datasets/projecte-aina/MentorES)
|
75 |
+
- [Squad-es](https://huggingface.co/datasets/squad_es)
|
76 |
+
- [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (Spanish subset)
|
77 |
+
- [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (Spanish subset)
|
78 |
+
|
79 |
+
**French**
|
80 |
+
- [Bactrian-X](https://huggingface.co/datasets/MBZUAI/Bactrian-X) (French subset)
|
81 |
+
- [AI-Society Translated](https://huggingface.co/datasets/camel-ai/ai_society_translated) (French subset)
|
82 |
+
- [GT-Dorimiti](https://huggingface.co/datasets/Gt-Doremiti/gt-doremiti-instructions)
|
83 |
+
- [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (French subset)
|
84 |
+
- [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (French subset)
|
85 |
+
|
86 |
+
**Italian**
|
87 |
+
- [Quora-IT-Baize](https://huggingface.co/datasets/andreabac3/Quora-Italian-Fauno-Baize)
|
88 |
+
- [Stackoverflow-IT-Vaize](https://huggingface.co/datasets/andreabac3/StackOverflow-Italian-Fauno-Baize)
|
89 |
+
- [Camoscio](https://huggingface.co/datasets/teelinsan/camoscio_cleaned)
|
90 |
+
- [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (Italian subset)
|
91 |
+
- [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (Italian subset)
|
92 |
+
|
93 |
+
## Training settings
|
94 |
+
|
95 |
+
- Full instruction fine-tuning on 8xH100.
|
96 |
+
- 0.6 - 4 training epochs (depending on dataset sampling).
|
97 |
+
- Framework: [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
|
98 |
+
- Precision: bf16
|
99 |
+
- Optimizer: AdamW
|
100 |
+
- Global batch size: 128 (with 8192 context length)
|
101 |
+
- Cosine Annealing with Warmup
|
102 |
+
|
103 |
+
|
104 |
+
## Tokenizer
|
105 |
+
|
106 |
+
Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
|
107 |
+
|
108 |
+
## Evaluation
|
109 |
+
|
110 |
+
Preliminary evaluation results can be found below.
|
111 |
+
Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance.
|
112 |
+
Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.
|
113 |
+
|
114 |
+
<details>
|
115 |
+
<summary>Evaluation results</summary>
|
116 |
+
|
117 |
+
### All 5 Languages
|
118 |
+
|
119 |
+
| | avg | arc_challenge | belebele | hellaswag | mmlu | truthfulqa |
|
120 |
+
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:|
|
121 |
+
| Occiglot-7b-eu5 | 0.516895 | 0.508109 | 0.675556 | 0.718963 | 0.402064 | 0.279782 |
|
122 |
+
| Occiglot-7b-eu5-instruct | 0.537799 | 0.53632 | 0.691111 | 0.731918 | 0.405198 | 0.32445 |
|
123 |
+
| Occiglot-7b-de-en | 0.518337 | 0.496297 | 0.715111 | 0.669034 | 0.412545 | 0.298697 |
|
124 |
+
| Occiglot-7b-de-en-instruct | 0.543173 | 0.530826 | 0.745778 | 0.67676 | 0.411326 | 0.351176 |
|
125 |
+
| Occiglot-7b-it-en | 0.513221 | 0.500564 | 0.694444 | 0.668099 | 0.413528 | 0.289469 |
|
126 |
+
| Occiglot-7b-it-en-instruct | 0.53721 | 0.523128 | 0.726667 | 0.683414 | 0.414918 | 0.337927 |
|
127 |
+
| Occiglot-7b-fr-en | 0.509209 | 0.496806 | 0.691333 | 0.667475 | 0.409129 | 0.281303 |
|
128 |
+
| Occiglot-7b-fr-en-instruct | 0.52884 | 0.515613 | 0.723333 | 0.67371 | 0.413024 | 0.318521 |
|
129 |
+
| Occiglot-7b-es-en | 0.483388 | 0.482949 | 0.606889 | 0.653902 | 0.398922 | 0.274277 |
|
130 |
+
| Occiglot-7b-es-en-instruct | 0.504023 | 0.494576 | 0.65 | 0.670847 | 0.406176 | 0.298513 |
|
131 |
+
| Leo-mistral-hessianai-7b | 0.484806 | 0.462103 | 0.653556 | 0.642242 | 0.379208 | 0.28692 |
|
132 |
+
| Claire-mistral-7b-0.1 | 0.514226 | 0.502773 | 0.705111 | 0.666871 | 0.412128 | 0.284245 |
|
133 |
+
| Lince-mistral-7b-it-es | 0.543427 | 0.540222 | 0.745111 | 0.692931 | 0.426241 | 0.312629 |
|
134 |
+
| Cerbero-7b | 0.532385 | 0.513714 | 0.743111 | 0.654061 | 0.427566 | 0.323475 |
|
135 |
+
| Mistral-7b-v0.1 | 0.547111 | 0.528937 | 0.768444 | 0.682516 | 0.448253 | 0.307403 |
|
136 |
+
| Mistral-7b-instruct-v0.2 | 0.56713 | 0.547228 | 0.741111 | 0.69455 | 0.422501 | 0.430262 |
|
137 |
+
|
138 |
+
|
139 |
+
### English
|
140 |
+
|
141 |
+
| | avg | arc_challenge | belebele | hellaswag | mmlu | truthfulqa |
|
142 |
+
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:|
|
143 |
+
| Occiglot-7b-eu5 | 0.59657 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 |
|
144 |
+
| Occiglot-7b-eu5-instruct | 0.617905 | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449 |
|
145 |
+
| Leo-mistral-hessianai-7b | 0.600949 | 0.522184 | 0.736667 | 0.777833 | 0.538812 | 0.429248 |
|
146 |
+
| Mistral-7b-v0.1 | 0.668385 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 |
|
147 |
+
| Mistral-7b-instruct-v0.2 | 0.713657 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 |
|
148 |
+
|
149 |
+
### German
|
150 |
+
|
151 |
+
| | avg | arc_challenge_de | belebele_de | hellaswag_de | mmlu_de | truthfulqa_de |
|
152 |
+
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:|
|
153 |
+
| Occiglot-7b-eu5 | 0.508311 | 0.493584 | 0.646667 | 0.666631 | 0.483406 | 0.251269 |
|
154 |
+
| Occiglot-7b-eu5-instruct | 0.531506 | 0.529512 | 0.667778 | 0.685205 | 0.488234 | 0.286802 |
|
155 |
+
| Occiglot-7b-de-en | 0.540085 | 0.50556 | 0.743333 | 0.67421 | 0.514633 | 0.26269 |
|
156 |
+
| Occiglot-7b-de-en-instruct | 0.566474 | 0.54491 | 0.772222 | 0.688407 | 0.515915 | 0.310914 |
|
157 |
+
| Leo-mistral-hessianai-7b | 0.517766 | 0.474765 | 0.691111 | 0.682109 | 0.488309 | 0.252538 |
|
158 |
+
| Mistral-7b-v0.1 | 0.527957 | 0.476476 | 0.738889 | 0.610589 | 0.529567 | 0.284264 |
|
159 |
+
| Mistral-7b-instruct-v0.2 | 0.535215 | 0.485885 | 0.688889 | 0.622438 | 0.501961 | 0.376904 |
|
160 |
+
|
161 |
+
### Spanish
|
162 |
+
|
163 |
+
| | avg | arc_challenge_es | belebele_es | hellaswag_es | mmlu_es | truthfulqa_es |
|
164 |
+
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:|
|
165 |
+
| Occiglot-7b-eu5 | 0.533194 | 0.508547 | 0.676667 | 0.725411 | 0.499325 | 0.25602 |
|
166 |
+
| Occiglot-7b-eu5-instruct | 0.548155 | 0.535043 | 0.68 | 0.737039 | 0.503525 | 0.285171 |
|
167 |
+
| Occiglot-7b-es-en | 0.527264 | 0.529915 | 0.627778 | 0.72253 | 0.512749 | 0.243346 |
|
168 |
+
| Occiglot-7b-es-en-instruct | 0.5396 | 0.545299 | 0.636667 | 0.734372 | 0.524374 | 0.257288 |
|
169 |
+
| Lince-mistral-7b-it-es | 0.547212 | 0.52906 | 0.721111 | 0.687967 | 0.512749 | 0.285171 |
|
170 |
+
| Mistral-7b-v0.1 | 0.554817 | 0.528205 | 0.747778 | 0.672712 | 0.544023 | 0.281369 |
|
171 |
+
| Mistral-7b-instruct-v0.2 | 0.568575 | 0.54188 | 0.73 | 0.685406 | 0.511699 | 0.373891 |
|
172 |
+
|
173 |
+
### French
|
174 |
+
|
175 |
+
| | avg | arc_challenge_fr | belebele_fr | hellaswag_fr | mmlu_fr | truthfulqa_fr |
|
176 |
+
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:|
|
177 |
+
| Occiglot-7b-eu5 | 0.525017 | 0.506416 | 0.675556 | 0.712358 | 0.495684 | 0.23507 |
|
178 |
+
| Occiglot-7b-eu5-instruct | 0.554216 | 0.541488 | 0.7 | 0.724245 | 0.499122 | 0.306226 |
|
179 |
+
| Occiglot-7b-fr-en | 0.542903 | 0.532934 | 0.706667 | 0.718891 | 0.51333 | 0.242694 |
|
180 |
+
| Occiglot-7b-fr-en-instruct | 0.567079 | 0.542344 | 0.752222 | 0.72553 | 0.52051 | 0.29479 |
|
181 |
+
| Claire-mistral-7b-0.1 | 0.515127 | 0.486741 | 0.694444 | 0.642964 | 0.479566 | 0.271919 |
|
182 |
+
| Cerbero-7b | 0.526044 | 0.462789 | 0.735556 | 0.624438 | 0.516462 | 0.290978 |
|
183 |
+
| Mistral-7b-v0.1 | 0.558129 | 0.525235 | 0.776667 | 0.66481 | 0.543121 | 0.280813 |
|
184 |
+
| Mistral-7b-instruct-v0.2 | 0.575821 | 0.551754 | 0.758889 | 0.67916 | 0.506837 | 0.382465 |
|
185 |
+
|
186 |
+
### Italian
|
187 |
+
|
188 |
+
| | avg | arc_challenge_it | belebele_it | hellaswag_it | mmlu_it | truthfulqa_it |
|
189 |
+
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:|
|
190 |
+
| Occiglot-7b-eu5 | 0.421382 | 0.501283 | 0.652222 | 0.700533 | 0 | 0.252874 |
|
191 |
+
| Occiglot-7b-eu5-instruct | 0.437214 | 0.516681 | 0.661111 | 0.71326 | 0 | 0.295019 |
|
192 |
+
| Occiglot-7b-it-en | 0.432667 | 0.536356 | 0.684444 | 0.694768 | 0 | 0.247765 |
|
193 |
+
| Occiglot-7b-it-en-instruct | 0.456261 | 0.545766 | 0.717778 | 0.713804 | 0 | 0.303959 |
|
194 |
+
| Cerbero-7b | 0.434939 | 0.522669 | 0.717778 | 0.631567 | 0 | 0.302682 |
|
195 |
+
| Mistral-7b-v0.1 | 0.426264 | 0.502139 | 0.734444 | 0.630371 | 0 | 0.264368 |
|
196 |
+
| Mistral-7b-instruct-v0.2 | 0.442383 | 0.519247 | 0.703333 | 0.6394 | 0 | 0.349936 |
|
197 |
+
|
198 |
+
|
199 |
+
</details>
|
200 |
+
|
201 |
+
## Acknowledgements
|
202 |
+
|
203 |
+
The pre-trained model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
|
204 |
+
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
|
205 |
+
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).
|
206 |
+
|
207 |
+
|
208 |
+
## License
|
209 |
+
|
210 |
+
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
|
211 |
+
|
212 |
+
## See also
|
213 |
+
|
214 |
+
- https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01
|
215 |
+
|