johannhartmann commited on
Commit
4e6cf7e
·
verified ·
1 Parent(s): 729574c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - it
5
+ license: apache-2.0
6
+ tags:
7
+ - hqq
8
+ pipeline_tag: text-generation
9
+ ---
10
+
11
+ ![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png)
12
+
13
+ # Occiglot-7B-it-en-Instruct
14
+
15
+ > A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident).
16
+ >
17
+
18
+ **Occiglot-7B-EU5-Instruct** is a the instruct version of [occiglot-7b-it-en](https://huggingface.co/occiglot/occiglot-7b-it-en), a generative language model with 7B parameters supporting the top-5 EU languages (English, Spanish, French, German, and Italian) and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/).
19
+ It was trained on 160M tokens of additional multilingual and code instructions.
20
+ Note that the model was not safety aligned and might generate problematic outputs.
21
+
22
+ This is the first release of an ongoing open research project for multilingual language models.
23
+ If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!**
24
+
25
+
26
+ ### Model details
27
+
28
+ - **Instruction tuned from:** [occiglot-7b-it-en](https://huggingface.co/occiglot/occiglot-7b-it-en)
29
+ - **Model type:** Causal decoder-only transformer language model
30
+ - **Languages:** English, Italian, and code.
31
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
32
+ - **Compute resources:** [DFKI cluster](https://www.dfki.de/en/web)
33
+ - **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
34
+ - **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology)
35
+ - **Contact:** [Discord](https://discord.gg/wUpvYs4XvM)
36
+
37
+ ### How to use
38
+
39
+ The model was trained using the chatml instruction template. You can use the transformers chat template feature for interaction.
40
+ Since the generation relies on some randomness, we
41
+ set a seed for reproducibility:
42
+
43
+ ```python
44
+ >>> from transformers import AutoTokenizer, MistralForCausalLM, set_seed
45
+ >>> tokenizer = AutoTokenizer.from_pretrained("occiglot/occiglot-7b-eu5-instruct")
46
+ >>> model = MistralForCausalLM.from_pretrained('occiglot/occiglot-7b-eu5-instruct') # You may want to use bfloat16 and/or move to GPU here
47
+ >>> set_seed(42)
48
+ >>> messages = [
49
+ >>> {"role": "system", 'content': 'You are a helpful assistant. Please give short and concise answers.'},
50
+ >>> {"role": "user", "content": "chi è il primo ministro italiano?"},
51
+ >>> ]
52
+ >>> tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=False, return_tensors='pt',)
53
+ >>> set_seed(42)
54
+ >>> outputs = model.generate(tokenized_chat.to('cuda'), max_new_tokens=200,)
55
+ >>> tokenizer.decode(out[0][len(tokenized_chat[0]):])
56
+ 'Il primo ministro italiano è attualmente Giorgia Meloni, presidente di Fratelli d'Italia, un partito politico di estrema destra.'
57
+ ```
58
+
59
+ ## Dataset
60
+
61
+ The training data was split evenly amongst the 5 languages based on the total number of tokens. We would like to thank Disco Research and Björn Plüster for making their dataset available to us.
62
+
63
+ **English and Code**
64
+ - [Open-Hermes-2B](https://huggingface.co/datasets/teknium/OpenHermes-2.5)
65
+
66
+ **Italian**
67
+ - [Quora-IT-Baize](https://huggingface.co/datasets/andreabac3/Quora-Italian-Fauno-Baize)
68
+ - [Stackoverflow-IT-Vaize](https://huggingface.co/datasets/andreabac3/StackOverflow-Italian-Fauno-Baize)
69
+ - [Camoscio](https://huggingface.co/datasets/teelinsan/camoscio_cleaned)
70
+ - [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (Italian subset)
71
+ - [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (Italian subset)
72
+
73
+ ## Training settings
74
+
75
+ - Full instruction fine-tuning on 8xH100.
76
+ - 0.6 - 4 training epochs (depending on dataset sampling).
77
+ - Framework: [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
78
+ - Precision: bf16
79
+ - Optimizer: AdamW
80
+ - Global batch size: 128 (with 8192 context length)
81
+ - Cosine Annealing with Warmup
82
+
83
+
84
+ ## Tokenizer
85
+
86
+ Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
87
+
88
+ ## Evaluation
89
+
90
+ Preliminary evaluation results can be found below.
91
+ Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance.
92
+ Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.
93
+
94
+ <details>
95
+ <summary>Evaluation results</summary>
96
+
97
+ ### English
98
+
99
+ | | arc_challenge | belebele | hellaswag | mmlu | truthfulqa | avg |
100
+ |:-------------------------------------|----------------:|-----------:|------------:|---------:|-------------:|---------:|
101
+ | occiglot/occiglot-7b-eu5 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 | 0.59657 |
102
+ | occiglot/occiglot-7b-eu5-instruct | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449034 | 0.617905 |
103
+ | occiglot/occiglot-7b-it-en | 0.580205 | 0.774444 | 0.804222 | 0.578977 | 0.412786 | 0.630127 |
104
+ | occiglot/occiglot-7b-it-en-instruct | 0.609215 | 0.82 | 0.809301 | 0.578835 | 0.479562 | 0.659383 |
105
+ | galatolo/cerbero-7b | 0.613481 | 0.827778 | 0.810396 | 0.600484 | 0.480911 | 0.66661 |
106
+ | mistralai/Mistral-7B-v0.1 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 | 0.668385 |
107
+ | mistralai/Mistral-7B-Instruct-v0.2 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 | 0.713657 |
108
+
109
+
110
+ ### Italian
111
+
112
+ | | arc_challenge_it | belebele_it | hellaswag_it | mmlu_it | truthfulqa_it | avg |
113
+ |:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:|
114
+ | occiglot/occiglot-7b-eu5 | 0.501283 | 0.652222 | 0.700533 | 0 | 0.252874 | 0.421382 |
115
+ | occiglot/occiglot-7b-eu5-instruct | 0.516681 | 0.661111 | 0.71326 | 0 | 0.295019 | 0.437214 |
116
+ | occiglot/occiglot-7b-it-en | 0.536356 | 0.684444 | 0.694768 | 0 | 0.247765 | 0.432667 |
117
+ | occiglot/occiglot-7b-it-en-instruct | 0.545766 | 0.717778 | 0.713804 | 0 | 0.303959 | 0.456261 |
118
+ | galatolo/cerbero-7b | 0.522669 | 0.717778 | 0.631567 | 0 | 0.302682 | 0.434939 |
119
+ | mistralai/Mistral-7B-v0.1 | 0.502139 | 0.734444 | 0.630371 | 0 | 0.264368 | 0.426264 |
120
+ | mistralai/Mistral-7B-Instruct-v0.2 | 0.519247 | 0.703333 | 0.6394 | 0 | 0.349936 | 0.442383 |
121
+
122
+
123
+ </details>
124
+
125
+ ## Acknowledgements
126
+
127
+ The pre-trained model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
128
+ The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
129
+ through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).
130
+
131
+
132
+ ## License
133
+
134
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
135
+
136
+ ## See also
137
+
138
+ - https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01
139
+ - https://huggingface.co/NikolayKozloff/occiglot-7b-it-en-GGUF
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 32001,
3
+ "<|im_start|>": 32000
4
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./mayflowergmbh/occiglot-7b-it-en-instruct-hf",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.40.0.dev0",
24
+ "use_cache": false,
25
+ "vocab_size": 32002
26
+ }
qmodel.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fccf43f7b505601700f8c447188bdaea6b3884ddc6d62fce32973bf0d1e867b
3
+ size 2597218112
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<|im_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": false
36
+ },
37
+ "32001": {
38
+ "content": "<|im_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ }
45
+ },
46
+ "additional_special_tokens": [],
47
+ "bos_token": "<s>",
48
+ "chat_template": "{{'<s>'}}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful assistant. Please give a long and detailed answer.' %}{% endif %}{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in loop_messages %}{% if loop.index0 == 0 %}{{'<|im_start|>system\n' + system_message + '<|im_end|>\n'}}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
49
+ "clean_up_tokenization_spaces": false,
50
+ "eos_token": "</s>",
51
+ "legacy": true,
52
+ "model_max_length": 1000000000000000019884624838656,
53
+ "pad_token": "</s>",
54
+ "sp_model_kwargs": {},
55
+ "spaces_between_special_tokens": false,
56
+ "tokenizer_class": "LlamaTokenizer",
57
+ "unk_token": "<unk>",
58
+ "use_default_system_prompt": false
59
+ }