--- license: apache-2.0 --- # maywell/EXAONE-3.0-7.8B-Instruct-Llamafied **Update 08/08:** LGAI-EXAONE has updated their license to version 1.1. You can now download the llamafied version of the EXAONE model here with improved usability. Special thanks to [@kuotient](https://huggingface.co/kuotient) for model uploads! --- 이전글) 동일 라이센스 재배포조차 금지되어있는 관계로 Llamafied 모델을 공유할 수 없게 되었습니다. vLLM, 추론 및 기타 활용으로 Llamafied 모델이 필요하다면 아래 스크립트를 실행해서 사용해주시면 감사하겠습니다. ```python import torch import gc from transformers import LlamaConfig, LlamaForCausalLM, AutoModelForCausalLM, AutoTokenizer from tqdm import tqdm def unload_model(model): """Clear memory by deleting a model and calling the garbage collector.""" del model gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() def create_llama_config(exaone_config): """Create and return a Llama configuration based on EXAONE config.""" return LlamaConfig( vocab_size=exaone_config.vocab_size, hidden_size=exaone_config.hidden_size, intermediate_size=exaone_config.intermediate_size, num_hidden_layers=exaone_config.num_layers, num_attention_heads=exaone_config.num_attention_heads, max_position_embeddings=exaone_config.max_position_embeddings, rms_norm_eps=exaone_config.layer_norm_epsilon, num_key_value_heads=exaone_config.num_key_value_heads, rope_theta=exaone_config.rope_theta, bos_token_id=exaone_config.bos_token_id, eos_token_id=exaone_config.eos_token_id, pad_token_id=exaone_config.pad_token_id, attention_bias=False, ) def copy_embedding_weights(llama_model, exaone_model): """Copy embedding weights from EXAONE to Llama model.""" llama_model.model.embed_tokens.weight.data = exaone_model.transformer.wte.weight.data.to(llama_model.device) def copy_layer_weights(llama_layer, exaone_layer, device): """Copy weights for a single layer from EXAONE to Llama model.""" # Self-attention llama_layer.self_attn.q_proj.weight.data = exaone_layer.attn.attention.q_proj.weight.data.to(device) llama_layer.self_attn.k_proj.weight.data = exaone_layer.attn.attention.k_proj.weight.data.to(device) llama_layer.self_attn.v_proj.weight.data = exaone_layer.attn.attention.v_proj.weight.data.to(device) llama_layer.self_attn.o_proj.weight.data = exaone_layer.attn.attention.out_proj.weight.data.to(device) # MLP llama_layer.mlp.gate_proj.weight.data = exaone_layer.mlp.c_fc_0.weight.data.to(device) llama_layer.mlp.up_proj.weight.data = exaone_layer.mlp.c_fc_1.weight.data.to(device) llama_layer.mlp.down_proj.weight.data = exaone_layer.mlp.c_proj.weight.data.to(device) # Layer Norms llama_layer.input_layernorm.weight.data = exaone_layer.ln_1.weight.data.to(device) llama_layer.post_attention_layernorm.weight.data = exaone_layer.ln_2.weight.data.to(device) def copy_final_weights(llama_model, exaone_model): """Copy final layer norm and LM head weights from EXAONE to Llama model.""" llama_model.model.norm.weight.data = exaone_model.transformer.ln_f.weight.data.to(llama_model.device) llama_model.lm_head.weight.data = exaone_model.lm_head.weight.data.to(llama_model.device) def port_exaone_to_llama(exaone_model_path, llama_model_path): print("Loading EXAONE model and tokenizer...") exaone_model = AutoModelForCausalLM.from_pretrained(exaone_model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) exaone_tokenizer = AutoTokenizer.from_pretrained(exaone_model_path, trust_remote_code=True) exaone_config = exaone_model.config print("Creating Llama configuration...") llama_config = create_llama_config(exaone_config) print("Initializing Llama model...") llama_model = LlamaForCausalLM(llama_config) llama_model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) print("Copying weights...") copy_embedding_weights(llama_model, exaone_model) for i in tqdm(range(exaone_config.num_layers), desc="Copying layers"): copy_layer_weights(llama_model.model.layers[i], exaone_model.transformer.h[i], llama_model.device) copy_final_weights(llama_model, exaone_model) print("Unloading EXAONE model to free memory...") unload_model(exaone_model) print(f"Saving ported Llama model and tokenizer to {llama_model_path}") llama_model.save_pretrained(llama_model_path, safe_serialization=True, max_shard_size="5GB") exaone_tokenizer.save_pretrained(llama_model_path) print("Unloading Llama model...") unload_model(llama_model) print(f"EXAONE model successfully ported to Llama format and saved at {llama_model_path}") if __name__ == "__main__": exaone_model_path = "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct" llama_model_path = "./exa_llamafied" port_exaone_to_llama(exaone_model_path, llama_model_path) ``` 모델을 공개해주신 `LG AI Research`분들께 감사의 말씀 드립니다. [Original Repository](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)