--- language: - ko library_name: transformers pipeline_tag: text-generation license: cc-by-nc-4.0 --- # **Synatra-7B-v0.3-RP🐧** ![Synatra-7B-v0.3-RP](./Synatra.png) ## Support Me μ‹œλ‚˜νŠΈλΌλŠ” 개인 ν”„λ‘œμ νŠΈλ‘œ, 1인의 μžμ›μœΌλ‘œ 개발되고 μžˆμŠ΅λ‹ˆλ‹€. λͺ¨λΈμ΄ λ§ˆμŒμ— λ“œμ…¨λ‹€λ©΄ μ•½κ°„μ˜ 연ꡬ비 지원은 μ–΄λ–¨κΉŒμš”? [Buy me a Coffee](https://www.buymeacoffee.com/mwell) Wanna be a sponser? Contact me on Telegram **AlzarTakkarsen** # **License** This model is strictly [*non-commercial*](https://creativecommons.org/licenses/by-nc/4.0/) (**cc-by-nc-4.0**) use only. The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included **cc-by-nc-4.0** license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released. If you are to use this model for commercial purpose, Contact me. # **Model Details** **Base Model** [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) **Trained On** A6000 48GB * 8 **Instruction format** It follows [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) format. **TODO** - ~~``RP 기반 νŠœλ‹ λͺ¨λΈ μ œμž‘``~~ βœ… - ~~``데이터셋 μ •μ œ``~~ βœ… - μ–Έμ–΄ 이해λŠ₯λ ₯ κ°œμ„  - ~~``상식 보완``~~ βœ… - ν† ν¬λ‚˜μ΄μ € λ³€κ²½ # **Model Benchmark** ## Ko-LLM-Leaderboard On Benchmarking... # **Implementation Code** Since, chat_template already contains insturction format above. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-RP") tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-RP") messages = [ {"role": "user", "content": "λ°”λ‚˜λ‚˜λŠ” μ›λž˜ ν•˜μ–€μƒ‰μ΄μ•Ό?"}, ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` # Why It's benchmark score is lower than preview version? **Apparently**, Preview model uses Alpaca Style prompt which has no pre-fix. But ChatML do.