File size: 8,369 Bytes
05f158b 5a1b9d7 b2a9904 5a1b9d7 b2a9904 05f158b 5a1b9d7 5c3e84b 5a1b9d7 9b79252 9d01321 9b79252 10b1598 9b79252 15cf1c5 9b79252 15cf1c5 5a1b9d7 375989c 7184f8d 900f0a9 5a1b9d7 900f0a9 5a1b9d7 10b1598 df02b63 10b1598 9698e26 fafcfb9 8e3c3e4 10b1598 7ee3416 10b1598 eb325a7 5a1b9d7 b50eeac 5a1b9d7 eb325a7 5a1b9d7 4e9d671 b2a9904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
---
language:
- ko
license: cc-by-nc-4.0
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: Synatra-V0.1-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-V0.1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.63
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-V0.1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-V0.1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.76
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-V0.1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.77
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-V0.1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.41
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/Synatra-V0.1-7B
name: Open LLM Leaderboard
---
# **V0.3 IS UP**
[Link to V0.3](https://huggingface.co/maywell/Synatra-7B-v0.3-base)
# **Synatra-V0.1-7B**
Made by StableFluffy
[Visit my website! - Currently on consturction..](https://www.stablefluffy.kr/)
## License
This model is strictly [*non-commercial*](https://creativecommons.org/licenses/by-nc/4.0/) (**cc-by-nc-4.0**) use only which takes priority over the **LLAMA 2 COMMUNITY LICENSE AGREEMENT**.
The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included **cc-by-nc-4.0** license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences.
The licence can be changed after new model released.
## Model Details
**Base Model**
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
**Trained On**
A6000 48GB * 8
## Instruction format
**νμ΅ κ³Όμ μ μ€μλ‘ [/INST]κ° μλ [\INST]κ° μ μ©λμμ΅λλ€. v0.2 μμ μμ λ μμ μ
λλ€.**
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
Plus, It is strongly recommended to add a space at the end of the prompt.
E.g.
```
text = "<s>[INST] μμ΄μ λ΄ν΄μ μ
μ μ μλ €μ€. [\INST] "
```
# **Model Benchmark**
## KULLM Evaluation
ꡬλ¦v2 repo μμ μ 곡λλ λ°μ΄ν°μ
κ³Ό ν둬ννΈλ₯Ό μ¬μ©νμ¬ νκ°νμ΅λλ€.
λΉμ GPT4μ νμ¬ GPT4κ° μμ ν λμΌνμ§λ μκΈ°μ μ€μ κ²°κ³Όμ μ½κ°μ μ°¨μ΄κ° μ‘΄μ¬ ν μ μμ΅λλ€.

| Model | μ΄ν΄κ°λ₯μ± | μμ°μ€λ¬μ | λ§₯λ½μ μ§ | ν₯λ―Έλ‘μ | μ§μμ΄μ¬μ© | μ λ°μ ν리ν°
| --- | --- | --- | --- | --- | --- | ---
| GPT-3.5 | 0.980 | 2.806 | 2.849 | 2.056 | 0.917 | 3.905
| GPT-4 | 0.984 | 2.897 | 2.944 | 2.143 | 0.968 | 4.083
| KoAlpaca v1.1 | 0.651 | 1.909 | 1.901 | 1.583 | 0.385 | 2.575
| koVicuna | 0.460 | 1.583 | 1.726 | 1.528 | 0.409 | 2.440
| KULLM v2 | 0.742 | 2.083 | 2.107 | 1.794 | 0.548 | 3.036
| **Synatra-V0.1-7B** | **0.960** | **2.821** | **2.755** | **2.356** | **0.934** | **4.065**
## KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT
[EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot)λ₯Ό μ¬μ©νμ¬ BoolQ, SentiNeg, Wicμ μΈ‘μ νμ΅λλ€.
HellaSwagμ COPAλ μλ³Έμ½λλ₯Ό μμ νλ κ³Όμ μμ μ΄λ €μμ κ²ͺμ΄ μμ§ μ§ννμ§ μμμ΅λλ€.
### NOTE
BoolQμλ Instruction λͺ¨λΈμ μ΄ν΄λ₯Ό λκΈ°μν΄ "μ κΈμ λν μ§λ¬Έμ μ¬μ€μ νμΈνλ μμ
μ
λλ€.", "μ, μλμ€λ‘ λλ΅ν΄μ£ΌμΈμ."μ ν둬ννΈλ₯Ό μΆκ°νμ΅λλ€.
SentiNegμλ Instruction λͺ¨λΈμ μ΄ν΄λ₯Ό λκΈ°μν΄ "μ λ¬Έμ₯μ κΈμ , λΆμ μ¬λΆλ₯Ό νλ¨νμΈμ."μ ν둬ννΈλ₯Ό μΆκ°νμ΅λλ€.
Wicμ κ²½μ°λ [INST], [\INST]λ§ μΆκ°νμμ΅λλ€.
| Model | COPA | HellaSwag | BoolQ | SentiNeg | Wic
| --- | --- | --- | --- | --- | ---
| EleutherAI/polyglot-ko-12.8b | 0.7937 | 0.5954 | 0.4818 | 0.9117 | 0.3985
| **Synatra-V0.1-7B** | **NaN** | **NaN** | **0.849** | **0.8690** | **0.4881**
# **Implementation Code**
Since, chat_template already contains insturction format above.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-V0.1-7B")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-V0.1-7B")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
If you run it on oobabooga your prompt would look like this. - ** Need to add Space at the end! **
```
[INST] λ§μ»¨μ λν΄μ μλ €μ€. [\INST]
```
> Readme format: [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b)
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maywell__Synatra-V0.1-7B)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 53.54 |
| ARC (25-shot) | 55.29 |
| HellaSwag (10-shot) | 76.63 |
| MMLU (5-shot) | 55.29 |
| TruthfulQA (0-shot) | 55.76 |
| Winogrande (5-shot) | 72.77 |
| GSM8K (5-shot) | 19.41 |
| DROP (3-shot) | 39.63 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maywell__Synatra-V0.1-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |55.86|
|AI2 Reasoning Challenge (25-Shot)|55.29|
|HellaSwag (10-Shot) |76.63|
|MMLU (5-Shot) |55.29|
|TruthfulQA (0-shot) |55.76|
|Winogrande (5-shot) |72.77|
|GSM8k (5-shot) |19.41|
|