{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: ultralytics in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (8.2.56)\n", "Requirement already satisfied: numpy<2.0.0,>=1.23.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (1.26.4)\n", "Requirement already satisfied: matplotlib>=3.3.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (3.9.0)\n", "Requirement already satisfied: opencv-python>=4.6.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (4.9.0.80)\n", "Requirement already satisfied: pillow>=7.1.2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (10.3.0)\n", "Requirement already satisfied: pyyaml>=5.3.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (6.0.1)\n", "Requirement already satisfied: requests>=2.23.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.32.2)\n", "Requirement already satisfied: scipy>=1.4.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (1.13.1)\n", "Requirement already satisfied: torch>=1.8.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.3.1+cu118)\n", "Requirement already satisfied: torchvision>=0.9.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (0.18.1)\n", "Requirement already satisfied: tqdm>=4.64.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (4.66.4)\n", "Requirement already satisfied: psutil in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (5.9.8)\n", "Requirement already satisfied: py-cpuinfo in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (9.0.0)\n", "Requirement already satisfied: pandas>=1.1.4 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.2.2)\n", "Requirement already satisfied: seaborn>=0.11.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (0.13.2)\n", "Requirement already satisfied: ultralytics-thop>=2.0.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.0.0)\n", "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (1.2.1)\n", "Requirement already satisfied: cycler>=0.10 in c:\\users\\user\\appdata\\roaming\\python\\python39\\site-packages (from matplotlib>=3.3.0->ultralytics) (0.10.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (4.52.4)\n", "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.5)\n", "Requirement already satisfied: packaging>=20.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (24.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (3.1.2)\n", "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0)\n", "Requirement already satisfied: importlib-resources>=3.2.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (6.4.0)\n", "Requirement already satisfied: pytz>=2020.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from pandas>=1.1.4->ultralytics) (2024.1)\n", "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from pandas>=1.1.4->ultralytics) (2024.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2.2.1)\n", "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2023.7.22)\n", "Requirement already satisfied: filelock in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.14.0)\n", "Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (4.11.0)\n", "Requirement already satisfied: sympy in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (1.12)\n", "Requirement already satisfied: networkx in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.2.1)\n", "Requirement already satisfied: jinja2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.1.4)\n", "Requirement already satisfied: fsspec in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2024.5.0)\n", "Requirement already satisfied: mkl<=2021.4.0,>=2021.1.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2021.4.0)\n", "Requirement already satisfied: colorama in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from tqdm>=4.64.0->ultralytics) (0.4.6)\n", "Requirement already satisfied: six in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from cycler>=0.10->matplotlib>=3.3.0->ultralytics) (1.16.0)\n", "Requirement already satisfied: zipp>=3.1.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from importlib-resources>=3.2.0->matplotlib>=3.3.0->ultralytics) (3.17.0)\n", "Requirement already satisfied: intel-openmp==2021.* in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from mkl<=2021.4.0,>=2021.1.1->torch>=1.8.0->ultralytics) (2021.4.0)\n", "Requirement already satisfied: tbb==2021.* in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from mkl<=2021.4.0,>=2021.1.1->torch>=1.8.0->ultralytics) (2021.12.0)\n", "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n", "Requirement already satisfied: mpmath>=0.19 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from sympy->torch>=1.8.0->ultralytics) (1.3.0)\n" ] } ], "source": [ "!pip install ultralytics" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-worldv2.pt to 'yolov8s-worldv2.pt'...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 24.7M/24.7M [00:03<00:00, 6.53MB/s]\n" ] } ], "source": [ "from ultralytics import YOLOWorld\n", "\n", "# Load the pre-trained model\n", "model = YOLOWorld('yolov8s-worldv2.pt')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ultralytics YOLOv8.2.56 Python-3.9.19 torch-2.3.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4070, 12282MiB)\n", "\u001b[34m\u001b[1mengine\\trainer: \u001b[0mtask=detect, mode=train, model=yolov8s-worldv2.pt, data=lvis.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\\detect\\train\n", "\n", " from n params module arguments \n", " 0 -1 1 928 ultralytics.nn.modules.conv.Conv [3, 32, 3, 2] \n", " 1 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", " 2 -1 1 29056 ultralytics.nn.modules.block.C2f [64, 64, 1, True] \n", " 3 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 4 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", " 5 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 6 -1 2 788480 ultralytics.nn.modules.block.C2f [256, 256, 2, True] \n", " 7 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] \n", " 8 -1 1 1838080 ultralytics.nn.modules.block.C2f [512, 512, 1, True] \n", " 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 1 837508 ultralytics.nn.modules.block.C2fAttn [768, 256, 1, 128, 4] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 1 226242 ultralytics.nn.modules.block.C2fAttn [384, 128, 1, 64, 2] \n", " 16 15 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 1 739204 ultralytics.nn.modules.block.C2fAttn [384, 256, 1, 128, 4] \n", " 19 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 1 2821896 ultralytics.nn.modules.block.C2fAttn [768, 512, 1, 256, 8] \n", " 22 [15, 18, 21] 1 2317270 ultralytics.nn.modules.head.WorldDetect [80, 512, True, [128, 256, 512]]\n", "YOLOv8s-worldv2 summary: 256 layers, 12,759,880 parameters, 12,759,864 gradients, 51.0 GFLOPs\n", "\n", "Transferred 409/412 items from pretrained weights\n", "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs\\detect\\train', view at http://localhost:6006/\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017... 99388 images, 0 backgrounds, 0 corrupt: 100%|██████████| 99388/99388 [01:45<00:00, 945.84it/s] \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017.cache\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017... 19626 images, 0 backgrounds, 0 corrupt: 100%|██████████| 19626/19626 [00:20<00:00, 940.54it/s] \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017.cache\n", "Plotting labels to runs\\detect\\train\\labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01, momentum=0.9) with parameter groups 64 weight(decay=0.0), 75 weight(decay=0.0005), 81 bias(decay=0.0)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\User\\anaconda3\\envs\\detr\\lib\\site-packages\\torch\\nn\\functional.py:5504: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\aten\\src\\ATen\\native\\transformers\\cuda\\sdp_utils.cpp:455.)\n", " attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mTensorBoard: \u001b[0mmodel graph visualization added \n", "Image sizes 640 train, 640 val\n", "Using 8 dataloader workers\n", "Logging results to \u001b[1mruns\\detect\\train\u001b[0m\n", "Starting training for 10 epochs...\n", "Closing dataloader mosaic\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 1/10 8.95G 1.246 2.038 1.233 94 640: 100%|██████████| 6212/6212 [1:04:12<00:00, 1.61it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [29:50<00:00, 2.92s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.436 0.107 0.0633 0.0462\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 2/10 10.1G 1.284 1.929 1.236 187 640: 100%|██████████| 6212/6212 [1:04:46<00:00, 1.60it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [38:09<00:00, 3.73s/it] \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.504 0.104 0.0644 0.0467\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 3/10 12.9G 1.361 2.051 1.274 110 640: 100%|██████████| 6212/6212 [1:03:48<00:00, 1.62it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:24<00:00, 2.78s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.547 0.0981 0.0604 0.0438\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 4/10 12.9G 1.384 2.076 1.289 122 640: 100%|██████████| 6212/6212 [1:03:56<00:00, 1.62it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:46<00:00, 2.81s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.543 0.105 0.0645 0.0469\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 5/10 11.4G 1.328 1.943 1.257 98 640: 100%|██████████| 6212/6212 [1:02:17<00:00, 1.66it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:50<00:00, 2.82s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.558 0.107 0.0712 0.0523\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 6/10 14.6G 1.283 1.836 1.232 191 640: 100%|██████████| 6212/6212 [1:05:51<00:00, 1.57it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [25:37<00:00, 2.50s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.547 0.116 0.0761 0.0561\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 7/10 11.8G 1.242 1.748 1.208 134 640: 100%|██████████| 6212/6212 [1:07:42<00:00, 1.53it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [27:45<00:00, 2.71s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.521 0.121 0.08 0.0593\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 8/10 14.9G 1.204 1.664 1.186 238 640: 100%|██████████| 6212/6212 [1:05:31<00:00, 1.58it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [27:03<00:00, 2.64s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.517 0.124 0.0826 0.0615\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 9/10 12.7G 1.168 1.583 1.165 162 640: 100%|██████████| 6212/6212 [1:02:55<00:00, 1.65it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:44<00:00, 2.81s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.514 0.126 0.0845 0.0631\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 10/10 10.9G 1.133 1.505 1.146 93 640: 100%|██████████| 6212/6212 [1:06:28<00:00, 1.56it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [34:24<00:00, 3.36s/it]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.517 0.125 0.0863 0.0646\n", "\n", "10 epochs completed in 15.840 hours.\n", "Optimizer stripped from runs\\detect\\train\\weights\\last.pt, 27.0MB\n", "Optimizer stripped from runs\\detect\\train\\weights\\best.pt, 27.0MB\n", "\n", "Validating runs\\detect\\train\\weights\\best.pt...\n", "Ultralytics YOLOv8.2.56 Python-3.9.19 torch-2.3.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4070, 12282MiB)\n", "YOLOv8s-worldv2 summary (fused): 195 layers, 12,749,288 parameters, 0 gradients, 315.7 GFLOPs\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [05:44<00:00, 1.78it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 19626 244707 0.515 0.126 0.0862 0.0645\n", " aerosol can/spray can 8 11 0 0 0.0524 0.0327\n", " air conditioner 65 146 0.191 0.137 0.0838 0.0581\n", " airplane/aeroplane 349 619 0.596 0.661 0.597 0.481\n", " alarm clock 25 60 0.0851 0.0833 0.0503 0.0413\n", "alcohol/alcoholic beverage 14 149 1 0 0.00533 0.00455\n", " alligator/gator 1 1 1 0 0 0\n", " almond 14 302 0.0396 0.0199 0.0181 0.0139\n", " ambulance 2 6 1 0 0 0\n", " amplifier 2 3 1 0 0.12 0.0732\n", " anklet/ankle bracelet 7 8 1 0 0.0127 0.00971\n", "antenna/aerial/transmitting aerial 93 202 0.0764 0.0248 0.0166 0.0078\n", " apple 210 3116 0.409 0.471 0.365 0.274\n", " applesauce 1 3 1 0 0 0\n", " apron 98 161 0.287 0.224 0.179 0.102\n", " aquarium/fish tank 10 10 1 0 0 0\n", " armband 8 15 0 0 0.0238 0.0157\n", " armchair 111 207 0.176 0.546 0.241 0.212\n", " armoire 1 1 1 0 0.995 0.895\n", " armor/armour 2 5 0 0 0 0\n", " artichoke 3 32 0.229 0.375 0.284 0.185\n", "trash can/garbage can/wastebin/dustbin/trash barrel/trash bin 389 548 0.184 0.52 0.259 0.209\n", " ashtray 30 51 0.485 0.0375 0.0627 0.047\n", " asparagus 15 150 0.0743 0.08 0.0224 0.0139\n", "atomizer/atomiser/spray/sprayer/nebulizer/nebuliser 9 11 1 0 0 0\n", " avocado 24 152 0.0868 0.118 0.0319 0.0233\n", " award/accolade 13 51 1 0 0 0\n", " awning 273 888 0.213 0.236 0.132 0.0853\n", " ax/axe 2 5 1 0 0 0\n", "baby buggy/baby carriage/perambulator/pram/stroller 67 78 0.389 0.167 0.178 0.118\n", " basketball backboard 7 7 1 0 0 0\n", "backpack/knapsack/packsack/rucksack/haversack 397 947 0.262 0.15 0.114 0.0649\n", "handbag/purse/pocketbook 367 713 0.299 0.191 0.12 0.0804\n", "suitcase/baggage/luggage 315 1791 0.483 0.458 0.42 0.287\n", " bagel/beigel 13 68 0 0 0.0266 0.0192\n", " ball 51 107 0.0759 0.178 0.0703 0.0625\n", " balloon 31 272 0.316 0.412 0.363 0.286\n", " bamboo 12 57 1 0 0.00163 0.000774\n", " banana 338 9156 0.635 0.446 0.506 0.315\n", " bandage 9 17 1 0 0.00683 0.0033\n", " bandanna/bandana 24 49 0 0 0.00221 0.00139\n", " banner/streamer 269 1163 0.152 0.181 0.0744 0.0549\n", " barbell 1 1 1 0 0 0\n", " barrel/cask 20 51 0.0638 0.137 0.0152 0.013\n", " barrette 9 12 0 0 0.00596 0.00322\n", "barrow/garden cart/lawn cart/wheelbarrow 3 3 0 0 0 0\n", " baseball base 63 78 0.225 0.513 0.213 0.15\n", " baseball 142 201 0.275 0.393 0.259 0.18\n", " baseball bat 342 522 0.485 0.446 0.386 0.225\n", "baseball cap/jockey cap/golf cap 350 1551 0.181 0.375 0.143 0.0939\n", "baseball glove/baseball mitt 311 477 0.564 0.579 0.548 0.382\n", " basket/handbasket 311 731 0.247 0.327 0.199 0.133\n", " basketball 9 14 0 0 0.0096 0.00754\n", "bass horn/sousaphone/tuba 1 3 1 0 0 0\n", " bat/bat animal 1 2 1 0 0 0\n", " bath mat 52 63 0.18 0.683 0.413 0.383\n", " bath towel 80 274 0.245 0.46 0.233 0.183\n", " bathrobe 7 10 0.123 0.3 0.0493 0.0387\n", " bathtub/bathing tub 157 170 0.378 0.682 0.565 0.464\n", " batter/batter food 1 2 1 0 0 0\n", " battery 9 19 1 0 0 0\n", " beachball 3 7 0 0 0.0423 0.0336\n", " bead 11 164 0 0 0.00176 0.00151\n", " bean curd/tofu 10 151 0.239 0.0397 0.0505 0.0428\n", " beanbag 8 16 1 0 0.0267 0.0265\n", " beanie/beany 92 298 0.0979 0.226 0.0604 0.0396\n", " bear 130 223 0.464 0.578 0.523 0.465\n", " bed 363 435 0.486 0.598 0.513 0.354\n", "bedspread/bedcover/bed covering/counterpane/spread 17 19 0.0669 0.579 0.061 0.0463\n", " cow 266 1663 0.37 0.603 0.438 0.318\n", "beef/beef food/boeuf/boeuf food 26 293 0.128 0.109 0.0481 0.026\n", " beer bottle 66 215 0.104 0.335 0.073 0.0619\n", " beer can 12 63 0 0 0.00992 0.00725\n", " bell 39 75 0.223 0.04 0.0403 0.0307\n", " bell pepper/capsicum 54 799 0.108 0.0864 0.0441 0.0272\n", " belt 368 676 0.368 0.344 0.25 0.127\n", " belt buckle 53 83 0.0393 0.012 0.00353 0.0021\n", " bench 404 807 0.291 0.264 0.187 0.142\n", " beret 1 2 1 0 0 0\n", " bib 12 12 0 0 0.114 0.0819\n", " Bible 1 1 1 0 0 0\n", "bicycle/bike/bike bicycle 387 969 0.445 0.375 0.325 0.214\n", " visor/vizor 87 166 0.174 0.283 0.131 0.103\n", " billboard 37 270 0.118 0.0667 0.0373 0.0268\n", " binder/ring-binder 21 47 0 0 0.00809 0.00603\n", "binoculars/field glasses/opera glasses 2 2 1 0 0 0\n", " bird 368 2011 0.458 0.356 0.306 0.198\n", " birdfeeder 4 8 1 0 0.0118 0.00588\n", " birdbath 3 3 1 0 0.0313 0.0251\n", " birdcage 7 34 0.0458 0.0294 0.0385 0.0368\n", " birdhouse 3 17 1 0 0 0\n", " birthday cake 49 74 0.221 0.405 0.214 0.154\n", " pirate flag 1 7 1 0 0 0\n", " black sheep 7 22 0 0 0.045 0.0347\n", " blackberry 10 61 0.252 0.232 0.173 0.139\n", " blackboard/chalkboard 25 37 0.342 0.351 0.222 0.184\n", " blanket 379 646 0.22 0.229 0.133 0.0917\n", "blazer/sport jacket/sport coat/sports jacket/sports coat 10 50 0.0521 0.02 0.0117 0.0116\n", "blender/liquidizer/liquidiser 54 57 0.242 0.526 0.378 0.316\n", " blinker/flasher 49 238 0.111 0.0756 0.035 0.0248\n", " blouse 51 99 0.0465 0.0707 0.0238 0.0169\n", " blueberry 27 713 0.263 0.265 0.154 0.0945\n", " gameboard 3 4 1 0 0 0\n", " boat/ship/ship boat 362 1893 0.541 0.247 0.288 0.161\n", " bobbin/spool/reel 10 15 1 0 0 0\n", " bobby pin/hairgrip 1 1 1 0 0 0\n", "boiled egg/coddled egg 6 9 0 0 0.0163 0.0163\n", "bolo tie/bolo/bola tie/bola 1 1 1 0 0 0\n", " deadbolt 7 8 1 0 0.0127 0.00919\n", " bolt 249 1953 0.142 0.0364 0.0243 0.0109\n", " bonnet 4 6 1 0 0 0\n", " book 383 7022 0.37 0.17 0.195 0.0877\n", " bookcase 14 17 0.0969 0.647 0.134 0.106\n", "booklet/brochure/leaflet/pamphlet 14 54 0 0 0.00297 0.00194\n", " bookmark/bookmarker 1 1 1 0 0 0\n", "boom microphone/microphone boom 2 2 1 0 0 0\n", " boot 258 750 0.235 0.305 0.19 0.134\n", " bottle 381 1766 0.255 0.403 0.183 0.131\n", " bottle opener 3 3 1 0 0 0\n", " bouquet 3 6 0 0 0.00733 0.00663\n", " bow/bow weapon 2 3 0 0 0 0\n", "bow/bow decorative ribbons 92 186 0.452 0.118 0.116 0.0901\n", " bow-tie/bowtie 42 68 0.203 0.324 0.181 0.13\n", " bowl 366 940 0.215 0.499 0.237 0.199\n", "bowler hat/bowler/derby hat/derby/plug hat 7 22 0 0 0.00585 0.00496\n", " bowling ball 2 9 0 0 0 0\n", " box 287 1389 0.152 0.168 0.0825 0.0533\n", " suspenders 15 26 1 0 0.0124 0.00525\n", " bracelet/bangle 309 582 0.228 0.285 0.124 0.0679\n", " brass plaque 1 3 1 0 0 0\n", " brassiere/bra/bandeau 20 22 1 0 0.0169 0.012\n", " bread-bin/breadbox 5 5 1 0 0 0\n", " bread 231 866 0.156 0.292 0.12 0.0877\n", "bridal gown/wedding gown/wedding dress 23 23 0.289 0.388 0.248 0.195\n", " briefcase 11 14 0.519 0.0714 0.0911 0.0891\n", " broccoli 278 2677 0.491 0.459 0.448 0.291\n", " broach 1 1 1 0 0 0\n", " broom 19 20 0 0 0.0214 0.0174\n", " brownie 6 20 0 0 0.00778 0.00661\n", " brussels sprouts 7 86 0.108 0.163 0.0448 0.0338\n", " bubble gum 1 1 1 0 0 0\n", " bucket/pail 144 273 0.152 0.333 0.138 0.111\n", " horse buggy 6 18 0 0 0.0278 0.0193\n", " horned cow 14 51 0 0 0.0264 0.0186\n", " bulldozer/dozer 1 1 1 0 0 0\n", " bullet train 21 25 0.288 0.24 0.242 0.216\n", "bulletin board/notice board 10 11 0 0 0.0388 0.0359\n", " bulletproof vest 1 2 1 0 0.498 0.398\n", " bullhorn/megaphone 2 2 1 0 0 0\n", " bun/roll 96 300 0.166 0.197 0.113 0.089\n", " bunk bed 2 2 0 0 0.0783 0.0705\n", " buoy 44 315 0.325 0.117 0.0815 0.043\n", " burrito 2 3 1 0 0 0\n", "bus/bus vehicle/autobus/charabanc/double-decker/motorbus/motorcoach 358 613 0.338 0.724 0.461 0.397\n", " business card 6 11 0 0 0.0105 0.00999\n", " butter 42 78 0.205 0.0256 0.0453 0.0274\n", " butterfly 13 116 1 0 0.000973 0.000673\n", " button 329 1452 0.304 0.17 0.116 0.0605\n", "cab/cab taxi/taxi/taxicab 33 68 0.163 0.026 0.0382 0.0279\n", " cabin car/caboose 3 5 1 0 0.00577 0.00326\n", " cabinet 352 1617 0.271 0.437 0.228 0.161\n", " cake 148 617 0.256 0.212 0.125 0.09\n", " calculator 22 27 0.413 0.037 0.0753 0.0715\n", " calendar 42 49 0.0564 0.0408 0.0209 0.0167\n", " calf 15 55 0 0 0.0513 0.042\n", " camcorder 6 12 1 0 0 0\n", " camel 3 3 1 0 0.00581 0.00581\n", " camera 253 493 0.291 0.0872 0.0656 0.0383\n", " camera lens 14 45 0 0 0.00263 0.00181\n", "camper/camper vehicle/camping bus/motor home 8 15 1 0 0 0\n", " can/tin can 83 343 0.127 0.117 0.0526 0.0421\n", " can opener/tin opener 4 4 1 0 0.0305 0.0275\n", " candle/candlestick 203 616 0.257 0.185 0.13 0.0773\n", " candle holder 31 67 0.0619 0.0448 0.0135 0.00717\n", " candy bar 2 7 0 0 0 0\n", " candy cane 2 3 1 0 0 0\n", " walking cane 16 20 1 0 0.143 0.087\n", " canister/canister 7 25 0 0 0.0119 0.00878\n", " canoe 12 17 0 0 0.0329 0.0257\n", " cantaloup/cantaloupe 3 6 1 0 0 0\n", " cap/cap headwear 5 8 0 0 0.000556 0.000401\n", "bottle cap/cap/cap container lid 201 980 0.275 0.339 0.194 0.133\n", " cape 7 11 1 0 0.017 0.017\n", "cappuccino/coffee cappuccino 17 21 0.0615 0.333 0.0453 0.0263\n", "car/car automobile/auto/auto automobile/automobile 364 2349 0.18 0.363 0.11 0.071\n", "railcar/railcar part of a train/railway car/railway car part of a train/railroad car/railroad car part of a train 33 190 0.085 0.121 0.0509 0.0327\n", " elevator car 1 1 1 0 0 0\n", " identity card 5 9 1 0 0 0\n", " card 11 37 0.0793 0.027 0.0159 0.0137\n", " cardigan 1 1 1 0 0.00375 0.00338\n", "cargo ship/cargo vessel 2 2 1 0 0 0\n", " horse carriage 8 8 0.0878 0.25 0.109 0.07\n", " carrot 247 3762 0.476 0.379 0.363 0.243\n", " tote bag 28 66 0.156 0.0152 0.034 0.0288\n", " cart 10 29 0.237 0.069 0.0522 0.0451\n", " carton 18 36 0 0 0.0356 0.0289\n", "cash register/register/register for cash transactions 6 7 0 0 0 0\n", " casserole 4 10 0 0 0 0\n", " cassette 1 3 1 0 0 0\n", "cast/plaster cast/plaster bandage 2 4 1 0 0 0\n", " cat 376 482 0.334 0.77 0.428 0.362\n", " cauliflower 20 97 0.0861 0.227 0.0831 0.0692\n", "cayenne/cayenne spice/cayenne pepper/cayenne pepper spice/red pepper/red pepper spice 3 22 1 0 0 0\n", " CD player 5 9 1 0 0.00364 0.00286\n", " celery 21 277 0.228 0.0866 0.0548 0.04\n", "cellular telephone/cellular phone/cellphone/mobile phone/smart phone 385 575 0.314 0.43 0.289 0.229\n", " chair 392 2368 0.157 0.185 0.07 0.0443\n", " chandelier 48 66 0.217 0.606 0.378 0.293\n", " chap 2 2 0 0 0 0\n", " checkerboard 1 1 1 0 0 0\n", " cherry 18 206 0.0181 0.00971 0.00507 0.00335\n", " chessboard 1 2 1 0 0 0\n", "chicken/chicken animal 6 16 0 0 0.00208 0.00177\n", " chickpea/garbanzo 2 30 0.523 0.133 0.185 0.163\n", "chili/chili vegetable/chili pepper/chili pepper vegetable/chilli/chilli vegetable/chilly/chilly vegetable/chile/chile vegetable 3 8 1 0 0 0\n", "crisp/crisp potato chip/potato chip 8 101 1 0 0.00718 0.0068\n", " chocolate bar 3 17 1 0 0.0104 0.00977\n", " chocolate cake 5 6 0 0 0.031 0.0281\n", " chocolate mousse 1 1 1 0 0 0\n", "choker/collar/neckband 161 241 0.109 0.206 0.0585 0.0362\n", "chopping board/cutting board/chopping block 122 150 0.158 0.353 0.197 0.146\n", " chopstick 32 90 0.0516 0.0667 0.0165 0.0111\n", " Christmas tree 53 72 0.45 0.389 0.361 0.289\n", " slide 19 30 1 0 0.0656 0.0273\n", " cigarette 38 51 0.889 0.0196 0.0255 0.0176\n", "cigarette case/cigarette pack 4 6 1 0 0 0\n", " cistern/water tank 131 168 0.26 0.607 0.3 0.246\n", " clasp 9 31 1 0 0 0\n", "cleansing agent/cleanser/cleaner 11 41 0 0 0.0173 0.0141\n", " clementine 1 1 1 0 0.00446 0.00446\n", " clip 14 25 1 0 0 0\n", " clipboard 8 15 0 0 0 0\n", "clock/timepiece/timekeeper 392 622 0.327 0.608 0.327 0.248\n", " clock tower 197 204 0.379 0.833 0.611 0.5\n", "clothes hamper/laundry basket/clothes basket 7 8 0 0 0.00995 0.00813\n", "clothespin/clothes peg 4 35 1 0 0 0\n", " coaster 43 87 0.18 0.31 0.156 0.121\n", " coat 133 702 0.0866 0.264 0.0651 0.0476\n", "coat hanger/clothes hanger/dress hanger 18 117 1 0 0 0\n", " coatrack/hatrack 2 2 1 0 0.00695 0.00695\n", " cock/rooster 8 15 1 0 0.0265 0.0179\n", "cocoa/cocoa beverage/hot chocolate/hot chocolate beverage/drinking chocolate 2 2 1 0 0 0\n", " coconut/cocoanut 5 208 0 0 0.012 0.0104\n", "coffee maker/coffee machine 46 49 0.253 0.653 0.436 0.353\n", "coffee table/cocktail table 142 185 0.279 0.697 0.354 0.3\n", " coffeepot 6 9 0 0 0 0\n", " coin 13 97 0.774 0.0206 0.113 0.0923\n", " colander/cullender 2 4 0 0 0.0277 0.0225\n", " coleslaw/slaw 5 10 1 0 0.0206 0.0128\n", "coloring material/colouring material 1 9 1 0 0 0\n", "pacifier/teething ring 13 15 1 0 0.036 0.0288\n", " comic book 1 8 1 0 0 0\n", " compass 1 1 1 0 0 0\n", "computer keyboard/keyboard/keyboard computer 379 562 0.456 0.774 0.57 0.453\n", " condiment 108 496 0.138 0.101 0.0496 0.0347\n", " cone/traffic cone 180 707 0.627 0.392 0.412 0.259\n", " control/controller 157 440 0.278 0.23 0.137 0.0769\n", "cookie/cooky/biscuit/biscuit cookie 26 255 0.0498 0.0275 0.0144 0.011\n", "cooler/cooler for food/ice chest 63 113 0.156 0.0619 0.0405 0.0312\n", "cork/cork bottle plug/bottle cork 20 71 0.403 0.0423 0.054 0.0471\n", " corkboard 1 1 1 0 0 0\n", "corkscrew/bottle screw 6 6 1 0 0 0\n", "edible corn/corn/maize 34 527 0.224 0.104 0.0788 0.0511\n", " cornbread 2 6 1 0 0 0\n", " cornet/horn/trumpet 10 28 1 0 0 0\n", "cornice/valance/valance board/pelmet 15 19 0.0913 0.474 0.134 0.12\n", " corset/girdle 2 2 1 0 0.0368 0.0368\n", " costume 7 10 1 0 0.0374 0.0362\n", "cougar/puma/catamount/mountain lion/panther 1 1 0 0 0 0\n", " coverall 1 1 1 0 0 0\n", " cowbell 4 6 1 0 0 0\n", "cowboy hat/ten-gallon hat 41 102 0.0844 0.157 0.0596 0.0478\n", " crab/crab animal 4 7 1 0 0 0\n", " cracker 14 112 1 0 0.00969 0.00701\n", "crape/crepe/French pancake 2 4 1 0 0 0\n", " crate 50 403 0.161 0.181 0.081 0.0494\n", " crayon/wax crayon 4 36 1 0 0 0\n", " cream pitcher 2 10 0 0 0 0\n", "crescent roll/croissant 8 33 1 0 0.00298 0.00298\n", " crib/cot 6 6 0 0 0.0673 0.0459\n", "crock pot/earthenware jar 6 7 0.0378 0.286 0.16 0.114\n", " crossbar 155 1036 0.0598 0.00193 0.00775 0.00398\n", " crouton 3 32 0 0 0.00508 0.00274\n", " crow 4 6 1 0 0.086 0.0807\n", " crown 16 34 1 0 0.00301 0.00281\n", " crucifix 7 8 0.0235 0.125 0.00821 0.00742\n", "cruise ship/cruise liner 6 7 0 0 0.0551 0.02\n", "police cruiser/patrol car/police car/squad car 10 13 1 0 0.0223 0.0171\n", " crumb 40 608 0.0888 0.0674 0.0278 0.0157\n", " crutch 2 3 1 0 0 0\n", " cub/cub animal 9 13 0.896 0.0769 0.135 0.132\n", " cube/square block 1 7 1 0 0 0\n", " cucumber/cuke 54 453 0.174 0.124 0.0698 0.0556\n", " cufflink 4 5 1 0 0 0\n", " cup 284 834 0.137 0.333 0.105 0.0837\n", " trophy cup 6 24 1 0 0 0\n", " cupboard/closet 48 329 0.0644 0.201 0.0531 0.0375\n", " cupcake 43 609 0.432 0.264 0.274 0.176\n", "hair curler/hair roller/hair crimper 2 11 1 0 0 0\n", " curling iron 1 1 1 0 0 0\n", " curtain/drapery 364 976 0.205 0.352 0.182 0.136\n", " cushion 212 1303 0.182 0.519 0.191 0.149\n", " cylinder 1 2 1 0 0 0\n", " dartboard 1 1 1 0 0 0\n", " date/date fruit 1 16 1 0 0 0\n", "deck chair/beach chair 40 289 0.375 0.253 0.204 0.107\n", " deer/cervid 9 33 0 0 0.0173 0.0132\n", " dental floss/floss 1 1 1 0 0.0553 0.0497\n", " desk 248 360 0.24 0.492 0.263 0.19\n", " detergent 3 3 1 0 0 0\n", " diaper 11 11 1 0 0.00222 0.00222\n", " diary/journal 1 1 1 0 0 0\n", " die/dice 5 16 1 0 0 0\n", " dinghy/dory/rowboat 3 13 0 0 0.00593 0.00375\n", " dining table 70 107 0.0717 0.0935 0.0353 0.0254\n", " tux/tuxedo 1 1 1 0 0 0\n", " dish 21 77 0 0 0.0158 0.0126\n", " dish antenna 11 34 0 0 0.0105 0.00815\n", " dishtowel/tea towel 25 32 0.0522 0.156 0.0363 0.0293\n", "dishwasher/dishwashing machine 73 74 0.378 0.757 0.553 0.47\n", " dispenser 44 96 0.123 0.292 0.0935 0.077\n", " Dixie cup/paper cup 19 51 0.0538 0.098 0.0364 0.0262\n", " dog 379 531 0.301 0.606 0.333 0.276\n", " dog collar 111 156 0.199 0.199 0.105 0.0576\n", " doll 36 67 0.385 0.0149 0.0332 0.0245\n", "dollar/dollar bill/one dollar bill 1 1 1 0 0 0\n", " dolphin 1 1 1 0 0 0\n", " domestic ass/donkey 7 25 1 0 0 0\n", " doorknob/doorhandle 345 770 0.186 0.155 0.0991 0.0632\n", " doormat/welcome mat 22 28 0.0222 0.0357 0.0206 0.018\n", " doughnut/donut 167 2562 0.419 0.602 0.473 0.376\n", " dragonfly 2 23 1 0 0 0\n", " drawer 363 1430 0.293 0.678 0.414 0.322\n", "underdrawers/boxers/boxershorts 4 5 1 0 0 0\n", " dress/frock 284 619 0.271 0.328 0.238 0.181\n", "dress hat/high hat/opera hat/silk hat/top hat 10 19 0 0 0.00427 0.00357\n", " dress suit 13 23 0.0425 0.435 0.0399 0.0354\n", " dresser 27 39 0.161 0.462 0.216 0.19\n", " drill 2 2 1 0 0 0\n", " dropper/eye dropper 2 2 1 0 0 0\n", "drum/drum musical instrument 4 13 1 0 0 0\n", " drumstick 2 3 1 0 0 0\n", " duck 30 134 0.0882 0.097 0.031 0.0192\n", " duct tape 3 6 1 0 0 0\n", "duffel bag/duffle bag/duffel/duffle 41 94 0.0832 0.255 0.0437 0.0313\n", " dumbbell 2 4 1 0 0 0\n", " dumpster 15 22 0.112 0.0455 0.0313 0.0282\n", " dustpan 3 3 1 0 0 0\n", " eagle 6 6 1 0 0.185 0.185\n", "earphone/earpiece/headphone 107 143 0.162 0.0559 0.0367 0.0248\n", " earplug 2 4 1 0 0 0\n", " earring 363 544 0.423 0.105 0.0975 0.0368\n", " easel 5 10 0 0 0.00504 0.00231\n", " eclair 1 1 1 0 0.0117 0.0117\n", " egg/eggs 43 189 0.288 0.118 0.11 0.0986\n", " egg roll/spring roll 5 28 1 0 0.0186 0.0146\n", "egg yolk/yolk/yolk egg 10 22 0.113 0.182 0.144 0.127\n", " eggbeater/eggwhisk 13 18 1 0 0 0\n", " eggplant/aubergine 4 7 1 0 0.00272 0.00136\n", " refrigerator 311 406 0.548 0.7 0.665 0.562\n", " elephant 364 1013 0.528 0.785 0.759 0.628\n", " elk/moose 4 23 1 0 0.00281 0.00195\n", " envelope 19 56 0 0 0.00497 0.00381\n", " eraser 8 10 1 0 0.00219 0.00219\n", " eyepatch 1 1 1 0 0 0\n", " falcon 1 1 1 0 0 0\n", " fan 137 156 0.333 0.429 0.355 0.241\n", " faucet/spigot/tap 374 594 0.398 0.476 0.348 0.237\n", " ferret 1 1 1 0 0 0\n", " Ferris wheel 9 9 1 0 0.148 0.126\n", " ferry/ferryboat 3 13 1 0 0.00142 0.00142\n", " fig/fig fruit 2 12 1 0 0 0\n", "fighter jet/fighter aircraft/attack aircraft 15 41 1 0 0.0748 0.0587\n", " figurine 30 168 0.105 0.131 0.0443 0.0278\n", "file cabinet/filing cabinet 9 14 1 0 0 0\n", "fire alarm/smoke alarm 36 40 0.149 0.15 0.134 0.114\n", "fire engine/fire truck 25 42 0.274 0.429 0.33 0.243\n", "fire extinguisher/extinguisher 31 46 0.613 0.152 0.234 0.146\n", " fire hose 10 16 1 0 0.0467 0.0432\n", " fireplace 102 103 0.471 0.466 0.406 0.304\n", "fireplug/fire hydrant/hydrant 259 279 0.69 0.783 0.78 0.66\n", " fish 23 92 0 0 0.000912 0.000583\n", " fish/fish food 3 7 0 0 0 0\n", "fishbowl/goldfish bowl 1 1 0 0 0 0\n", "fishing rod/fishing pole 7 17 1 0 0.00849 0.00557\n", " flag 390 1248 0.313 0.212 0.154 0.0938\n", " flagpole/flagstaff 70 189 1 0 0.0246 0.012\n", " flamingo 4 202 0 0 0.00347 0.000664\n", " flannel 2 3 1 0 0 0\n", " flap 6 15 1 0 0.000242 0.000112\n", " flash/flashbulb 2 2 1 0 0 0\n", " flashlight/torch 6 7 1 0 0 0\n", "flip-flop/flip-flop sandal 50 139 0.163 0.245 0.105 0.0723\n", "flipper/flipper footwear/fin/fin footwear 2 2 1 0 0 0\n", "flower arrangement/floral arrangement 377 908 0.283 0.302 0.195 0.122\n", "flute glass/champagne flute 6 11 0.202 0.0909 0.0632 0.06\n", " foal 4 4 1 0 0.0327 0.0301\n", " folding chair 12 28 0 0 0.0102 0.00845\n", " food processor 4 4 0 0 0.0844 0.076\n", "football/football American 6 7 1 0 0 0\n", " footstool/footrest 5 8 0.112 0.5 0.105 0.105\n", " fork 359 652 0.278 0.316 0.224 0.164\n", " forklift 4 4 1 0 0 0\n", " freight car 5 71 0 0 0.0396 0.0248\n", " French toast 2 7 1 0 0 0\n", "freshener/air freshener 3 3 1 0 0 0\n", " frisbee 334 453 0.512 0.762 0.708 0.608\n", " frog/toad/toad frog 7 56 1 0 0.0255 0.00656\n", " fruit juice 1 14 1 0 0 0\n", "frying pan/frypan/skillet 19 37 0.0766 0.27 0.0643 0.0463\n", " funnel 2 2 1 0 0 0\n", " futon 4 5 1 0 0 0\n", " garbage 4 30 1 0 0 0\n", " garbage truck 3 6 0.181 0.167 0.0777 0.076\n", " garden hose 8 8 1 0 0.00857 0.00429\n", " gargle/mouthwash 3 5 1 0 0 0\n", " gargoyle 2 12 1 0 0 0\n", " garlic/ail 17 213 0.0937 0.00939 0.0179 0.0148\n", "gasmask/respirator/gas helmet 1 1 1 0 0.0262 0.0183\n", " gazelle 6 20 0.286 0.05 0.128 0.0928\n", " gelatin/jelly 4 8 1 0 0 0\n", "giant panda/panda/panda bear 12 12 0 0 0.00447 0.00332\n", " gift wrap 11 61 1 0 0.00435 0.003\n", " ginger/gingerroot 4 13 1 0 0 0\n", " giraffe 358 756 0.789 0.837 0.834 0.7\n", "cincture/sash/waistband/waistcloth 3 3 1 0 0 0\n", "glass/glass drink container/drinking glass 370 1205 0.225 0.482 0.259 0.216\n", " globe 13 16 1 0 0.0108 0.00937\n", " glove 381 1131 0.25 0.329 0.159 0.0908\n", " goat 20 132 0.0252 0.0152 0.00899 0.00641\n", " goggles 327 619 0.541 0.421 0.443 0.244\n", " golf club/golf-club 2 9 1 0 0 0\n", " golfcart 4 7 1 0 0.0918 0.0827\n", " gondola/gondola boat 1 1 1 0 0 0\n", " goose 4 45 0.0296 0.0444 0.0164 0.0134\n", " gourd 1 16 0 0 0 0\n", " grape 45 1745 0.162 0.138 0.0668 0.0467\n", " grater 9 10 0.1 0.1 0.04 0.0337\n", "gravestone/headstone/tombstone 7 47 0.0845 0.106 0.093 0.0715\n", "gravy boat/gravy holder 2 3 1 0 0 0\n", " green bean 28 620 0.117 0.079 0.0361 0.0217\n", "green onion/spring onion/scallion 18 359 0.164 0.136 0.0657 0.0457\n", " griddle 1 1 1 0 0 0\n", "grill/grille/grillwork/radiator grille 53 90 0.122 0.244 0.117 0.09\n", " grizzly/grizzly bear 6 11 0 0 0.0834 0.0786\n", " grocery bag 3 4 0 0 0.0158 0.0154\n", " guitar 35 52 0.179 0.0577 0.0461 0.0379\n", " gull/seagull 18 170 0.102 0.153 0.046 0.0286\n", " gun 3 4 1 0 0 0\n", " hairbrush 21 28 0.057 0.0102 0.0182 0.0166\n", " hairnet 3 6 1 0 0.1 0.0984\n", " hairpin 5 7 1 0 0 0\n", " ham/jambon/gammon 46 357 0.218 0.0728 0.0672 0.0441\n", "hamburger/beefburger/burger 5 8 1 0 0.00574 0.00494\n", " hammer 7 13 1 0 0 0\n", " hammock 6 8 1 0 0 0\n", " hamper 1 1 1 0 0 0\n", " hair dryer 27 32 0 0 0.0119 0.00704\n", "hand glass/hand mirror 2 2 1 0 0 0\n", " hand towel/face towel 40 87 0.103 0.46 0.0797 0.0622\n", "handcart/pushcart/hand truck 15 31 0.0188 0.0323 0.013 0.00828\n", " handcuff 2 2 1 0 0 0\n", " handkerchief 7 8 0.16 0.1 0.0773 0.0601\n", " handle/grip/handgrip 394 1765 0.157 0.0827 0.0442 0.0242\n", "handsaw/carpenter's saw 4 4 1 0 0 0\n", "harmonium/organ/organ musical instrument/reed organ/reed organ musical instrument 2 2 1 0 0 0\n", " hat 365 1357 0.107 0.209 0.0588 0.039\n", " veil 9 9 1 0 0.0334 0.0307\n", " headband 178 232 0.278 0.332 0.215 0.132\n", " headboard 142 155 0.335 0.652 0.465 0.353\n", " headlight/headlamp 369 1442 0.243 0.189 0.11 0.0595\n", " headscarf 22 47 1 0 0.00423 0.00242\n", " headset 3 4 0 0 0 0\n", "headstall/headstall for horses/headpiece/headpiece for horses 10 16 0 0 0.00322 0.00123\n", " heart 16 84 0.235 0.0238 0.0164 0.0134\n", " heater/warmer 11 12 1 0 0.0022 0.0022\n", " helicopter 8 9 0 0 0.0203 0.0108\n", " helmet 371 884 0.186 0.438 0.159 0.106\n", " heron 2 2 1 0 0.0152 0.0104\n", "highchair/feeding chair 7 8 0.292 0.125 0.0844 0.0771\n", " hinge 241 811 0.211 0.112 0.0749 0.0369\n", " hippopotamus 4 7 1 0 0 0\n", " hockey stick 2 2 1 0 0 0\n", " hog/pig 16 31 1 0 0 0\n", "home plate/home plate baseball/home base/home base baseball 86 88 0.251 0.477 0.21 0.14\n", " honey 3 5 1 0 0.00332 0.00332\n", "fume hood/exhaust hood 33 33 0.153 0.515 0.19 0.17\n", " hook 44 200 0 0 0.00686 0.00407\n", " horse 395 851 0.42 0.676 0.542 0.438\n", " hose/hosepipe 53 101 0.109 0.0297 0.0135 0.006\n", " hotplate 1 1 1 0 0 0\n", " hot sauce 13 19 0 0 0.0233 0.0212\n", " hummingbird 1 1 0 0 0.142 0.142\n", " polar bear 28 36 0.371 0.722 0.558 0.504\n", " icecream 6 15 1 0 0.00172 0.0014\n", " popsicle 1 2 1 0 0 0\n", " ice maker 7 8 1 0 0 0\n", "igniter/ignitor/lighter 16 21 1 0 0 0\n", " iPod 30 31 0.196 0.258 0.138 0.118\n", "iron/iron for clothing/smoothing iron/smoothing iron for clothing 6 6 1 0 0 0\n", " ironing board 4 5 1 0 0.0812 0.0731\n", " jacket 398 1569 0.0989 0.333 0.0722 0.0503\n", " jam 2 3 1 0 0 0\n", " jar 62 304 0.169 0.391 0.182 0.14\n", " jean/blue jean/denim 379 971 0.115 0.451 0.12 0.097\n", " jeep/landrover 9 11 1 0 0.0103 0.00981\n", "jersey/T-shirt/tee shirt 349 1392 0.0938 0.414 0.0855 0.0662\n", "jet plane/jet-propelled plane 10 22 0 0 0.0233 0.0194\n", " jewelry/jewellery 4 58 1 0 0 0\n", " joystick 1 2 1 0 0 0\n", " jumpsuit 1 1 1 0 0.00686 0.00618\n", " kayak 6 13 1 0 0.00602 0.00288\n", " keg 1 2 1 0 0 0\n", " kennel/doghouse 1 2 0 0 0 0\n", " kettle/boiler 22 31 0.19 0.226 0.124 0.103\n", " key 43 104 1 0 0.00987 0.00541\n", " kimono 3 7 0 0 0 0\n", " kitchen sink 123 129 0.348 0.395 0.263 0.166\n", " kitchen table 7 7 1 0 0 0\n", " kite 335 1803 0.444 0.42 0.347 0.24\n", " kitten/kitty 8 11 1 0 0.12 0.096\n", " kiwi fruit 20 189 0.138 0.0159 0.0206 0.0157\n", " knee pad 152 301 0.402 0.223 0.224 0.135\n", " knife 368 735 0.224 0.269 0.16 0.115\n", " knob 277 1483 0.335 0.354 0.245 0.133\n", "knocker/knocker on a door/doorknocker 2 2 1 0 0.00224 0.00201\n", " koala/koala bear 1 1 1 0 0 0\n", "lab coat/laboratory coat 3 4 1 0 0.0099 0.0099\n", " ladder 117 167 0.146 0.0299 0.0211 0.0124\n", " ladle 17 42 0.0998 0.119 0.0441 0.0236\n", "ladybug/ladybeetle/ladybird beetle 2 4 0.167 0.25 0.0493 0.0296\n", " lamb/lamb animal 17 71 0.153 0.069 0.11 0.0944\n", " lamb-chop/lambchop 1 3 1 0 0 0\n", " lamp 382 854 0.294 0.409 0.24 0.183\n", " lamppost 132 463 0.08 0.0367 0.0246 0.0134\n", " lampshade 214 403 0.296 0.737 0.434 0.374\n", " lantern 12 47 1 0 0.00424 0.00336\n", " lanyard/laniard 84 226 0.182 0.111 0.056 0.028\n", "laptop computer/notebook computer 412 551 0.454 0.724 0.517 0.45\n", " lasagna/lasagne 1 1 1 0 0 0\n", " latch 42 149 0 0 0.00536 0.00355\n", " lawn mower 3 3 1 0 0 0\n", " leather 1 1 1 0 0 0\n", "legging/legging clothing/leging/leging clothing/leg covering 12 23 1 0 0.00112 0.000794\n", " Lego/Lego set 9 168 1 0 0.00298 0.00298\n", " legume 5 242 1 0 0.00168 0.00117\n", " lemon 78 440 0.146 0.223 0.0885 0.0728\n", " lettuce 116 859 0.214 0.0722 0.0665 0.0422\n", "license plate/numberplate 340 761 0.277 0.288 0.137 0.0856\n", "life buoy/lifesaver/life belt/life ring 32 78 0.0881 0.128 0.0365 0.0233\n", " life jacket/life vest 35 84 0.244 0.157 0.115 0.0642\n", " lightbulb 180 1135 0.139 0.102 0.0475 0.027\n", " lime 24 201 0.139 0.224 0.0815 0.0644\n", " limousine 2 2 1 0 0 0\n", " lion 13 24 1 0 0.00389 0.00206\n", " lip balm 2 4 0 0 0 0\n", "liquor/spirits/hard liquor/liqueur/cordial 2 33 1 0 0.00146 0.00146\n", " lizard 4 4 1 0 0 0\n", " log 199 1105 0.214 0.106 0.0716 0.0461\n", " lollipop 5 33 1 0 0 0\n", "speaker/speaker stereo equipment 210 393 0.295 0.552 0.365 0.28\n", " loveseat 11 14 1 0 0.141 0.14\n", " machine gun 1 3 1 0 0 0\n", " magazine 84 329 0.109 0.0409 0.0266 0.0122\n", " magnet 67 1494 0.348 0.297 0.214 0.128\n", " mail slot 4 4 1 0 0 0\n", "mailbox/mailbox at home/letter box/letter box at home 22 45 1 0 0.0234 0.00935\n", " mallet 4 13 1 0 0 0\n", " mandarin orange 10 188 0.493 0.0851 0.193 0.17\n", " manager/through 18 23 1 0 0 0\n", " manhole 40 71 0.133 0.451 0.181 0.136\n", " map 24 36 0.0703 0.111 0.0488 0.0439\n", " marker 21 71 0.0182 0.0141 0.0222 0.0151\n", " martini 1 1 1 0 0 0\n", " mashed potato 15 34 0.202 0.0588 0.0742 0.068\n", " mask/facemask 158 293 0.419 0.436 0.33 0.161\n", " mast 68 586 0.286 0.00549 0.084 0.0271\n", "mat/mat gym equipment/gym mat 4 10 1 0 0 0\n", " matchbox 2 2 1 0 0.252 0.252\n", " mattress 48 74 0.151 0.0541 0.0624 0.0413\n", " measuring cup 12 15 0 0 0.0232 0.0217\n", "measuring stick/ruler/ruler measuring stick/measuring rod 6 7 1 0 0.00296 0.00296\n", " meatball 3 16 0.128 0.5 0.113 0.108\n", " medicine 13 49 1 0 0.0323 0.0313\n", " melon 4 38 0 0 0.0013 0.0013\n", " microphone 60 90 0.0848 0.0066 0.0229 0.0127\n", " microscope 2 2 1 0 0 0\n", " microwave oven 181 191 0.39 0.791 0.691 0.559\n", " milestone/milepost 1 1 1 0 0 0\n", " milk 16 19 0.592 0.0526 0.0794 0.076\n", " milkshake 1 1 1 0 0 0\n", " minivan 102 311 0.143 0.209 0.0702 0.0516\n", " mint candy 3 6 1 0 0 0\n", " mirror 336 573 0.186 0.369 0.136 0.0899\n", " mitten 12 33 0 0 0.0224 0.0146\n", "mixer/mixer kitchen tool/stand mixer 16 20 0.0848 0.0748 0.0449 0.0293\n", " money 11 79 1 0 0.00361 0.00361\n", "monitor/monitor computer equipment 280 598 0.324 0.736 0.432 0.329\n", " monkey 12 12 1 0 0.0103 0.00431\n", " motor 75 149 0.164 0.0805 0.0671 0.0322\n", " motor scooter/scooter 47 111 0.109 0.0721 0.0591 0.0374\n", " motorcycle 354 1321 0.497 0.468 0.392 0.265\n", "mound/mound baseball/pitcher's mound 47 48 0.247 0.854 0.598 0.53\n", "mouse/mouse computer equipment/computer mouse 289 384 0.508 0.628 0.589 0.495\n", " mousepad 55 66 0.249 0.643 0.394 0.326\n", " muffin 15 154 0 0 0.0157 0.0129\n", " mug 180 368 0.202 0.438 0.255 0.214\n", " mushroom 85 1357 0.18 0.221 0.118 0.0702\n", "musical instrument/instrument/instrument musical 1 3 1 0 0 0\n", "napkin/table napkin/serviette 391 918 0.295 0.224 0.155 0.111\n", " necklace 386 524 0.465 0.307 0.295 0.171\n", "necktie/tie/tie necktie 361 815 0.454 0.38 0.32 0.222\n", " needle 3 4 1 0 0 0\n", " nest 2 3 1 0 0 0\n", "newspaper/paper/paper newspaper 63 202 0.0499 0.0743 0.0162 0.0117\n", " newsstand 3 6 1 0 0.00521 0.00521\n", "nightshirt/nightwear/sleepwear/nightclothes 3 3 1 0 0.000598 0.000598\n", "nosebag/nosebag for animals/feedbag 1 1 1 0 0 0\n", "noseband/noseband for animals/nosepiece/nosepiece for animals 10 21 0 0 0.00439 0.00253\n", " notebook 45 96 0.145 0.104 0.0312 0.0246\n", " notepad 18 29 0.0289 0.069 0.0172 0.0154\n", " nut 11 99 0 0 0.0127 0.0056\n", " oar 19 51 0.127 0.118 0.0281 0.0125\n", "oil lamp/kerosene lamp/kerosine lamp 1 1 0 0 0.00596 0.00533\n", " olive oil 6 17 0 0 0.00117 0.00105\n", " omelet/omelette 5 9 1 0 0.0166 0.015\n", " onion 135 1767 0.208 0.105 0.0883 0.0566\n", " orange/orange fruit 161 2364 0.405 0.57 0.381 0.293\n", " orange juice 15 21 0.147 0.333 0.167 0.0978\n", " ostrich 8 9 0.273 0.111 0.217 0.191\n", "ottoman/pouf/pouffe/hassock 34 48 0.238 0.396 0.278 0.246\n", " oven 96 111 0.175 0.495 0.184 0.139\n", "overalls/overalls clothing 13 14 0 0 0.0124 0.00661\n", " owl 11 14 1 0 0.0677 0.0583\n", " packet 4 41 1 0 0 0\n", " pad 13 52 0.232 0.0577 0.0509 0.0424\n", " paddle/boat paddle 16 30 0.202 0.333 0.125 0.0667\n", " padlock 18 27 1 0 0.0113 0.0086\n", " paintbrush 7 15 1 0 0 0\n", " painting 230 574 0.157 0.452 0.158 0.116\n", " pajamas/pyjamas 27 54 0.0812 0.0741 0.0285 0.024\n", " palette/pallet 6 42 1 0 0 0\n", "pan/pan for cooking/cooking pan 61 242 0.218 0.0702 0.0854 0.0557\n", "pan/pan metal container 1 1 0 0 0 0\n", " pancake 13 45 0 0 0.0115 0.00791\n", " pantyhose 3 3 1 0 0 0\n", " papaya 7 96 0.0308 0.0104 0.00962 0.00789\n", " paper plate 60 170 0.0895 0.288 0.0563 0.0418\n", " paper towel 95 116 0.276 0.336 0.246 0.191\n", "paperback book/paper-back book/softback book/soft-cover book 1 19 1 0 0 0\n", " paperweight 1 1 1 0 0 0\n", " parachute 5 16 0 0 0.00314 0.00306\n", "parakeet/parrakeet/parroket/paraquet/paroquet/parroquet 5 21 0 0 0.0214 0.0143\n", "parasail/parasail sports 15 50 0.199 0.36 0.158 0.135\n", " parasol/sunshade 5 7 0.297 0.143 0.0932 0.0864\n", " parchment 1 6 1 0 0 0\n", " parka/anorak 4 29 1 0 0.00618 0.00592\n", " parking meter 104 182 0.427 0.442 0.386 0.292\n", " parrot 5 8 0.365 0.25 0.174 0.118\n", "passenger car/passenger car part of a train/coach/coach part of a train 13 59 0 0 0.00941 0.00605\n", " passport 4 6 1 0 0 0\n", " pastry 56 1683 0.255 0.177 0.145 0.0997\n", " pea/pea food 19 467 0.193 0.248 0.136 0.0982\n", " peach 14 257 0 0 0.0102 0.00957\n", " peanut butter 10 18 1 0 0.0738 0.0738\n", " pear 28 268 0.194 0.0933 0.0739 0.0605\n", "peeler/peeler tool for fruit and vegetables 2 2 0 0 0 0\n", " pelican 9 24 0 0 0.0346 0.027\n", " pen 63 237 0.11 0.0591 0.0437 0.0204\n", " pencil 27 83 0.184 0.0964 0.0697 0.0353\n", "pencil box/pencil case 1 1 1 0 0 0\n", " pencil sharpener 3 3 1 0 0 0\n", " pendulum 1 1 1 0 0 0\n", " penguin 8 28 0 0 0.00422 0.00357\n", " pennant 1 34 1 0 0 0\n", " penny/penny coin 1 2 1 0 0 0\n", " pepper/peppercorn 32 86 0 0 0.00595 0.00467\n", "pepper mill/pepper grinder 16 19 0.101 0.158 0.0866 0.0834\n", " perfume 5 16 1 0 0.00591 0.00343\n", "person/baby/child/boy/girl/man/woman/human 390 2530 0.0353 0.0134 0.0211 0.0113\n", " pet 17 27 0 0 0.0147 0.0134\n", "pew/pew church bench/church bench 1 12 1 0 0 0\n", "phonebook/telephone book/telephone directory 1 1 1 0 0 0\n", "phonograph record/phonograph recording/record/record phonograph recording 6 26 1 0 0 0\n", " piano 20 24 0.187 0.167 0.113 0.0889\n", " pickle 45 162 0.172 0.117 0.0637 0.0506\n", " pickup truck 85 171 0.159 0.257 0.107 0.0828\n", " pie 9 22 1 0 0.0337 0.0319\n", " pigeon 10 233 0.266 0.223 0.152 0.0896\n", " piggy bank/penny bank 1 1 1 0 0 0\n", " pillow 407 1290 0.349 0.54 0.329 0.254\n", " pin/pin non jewelry 4 20 1 0 0 0\n", " pineapple 36 215 0.149 0.0837 0.0581 0.0349\n", " pinecone 6 12 0.477 0.0833 0.091 0.0898\n", " tobacco pipe 1 1 1 0 0 0\n", " pipe/piping 243 786 0.17 0.0445 0.0382 0.0185\n", " pistol/handgun 1 1 1 0 0 0\n", "pita/pita bread/pocket bread 2 4 1 0 0 0\n", "pitcher/pitcher vessel for liquid/ewer 70 115 0.248 0.112 0.109 0.0904\n", " pizza 391 782 0.345 0.664 0.481 0.412\n", " place mat 125 330 0.185 0.158 0.101 0.0714\n", " plate 365 1042 0.173 0.485 0.146 0.118\n", " platter 7 23 1 0 0.00499 0.00338\n", " playpen 1 1 1 0 0 0\n", " pliers/plyers 6 24 1 0 0 0\n", "plow/plow farm equipment/plough/plough farm equipment 3 3 1 0 0 0\n", " pocketknife 1 1 1 0 0 0\n", "poker/poker fire stirring tool/stove poker/fire hook 2 4 1 0 0 0\n", " pole/post 346 2724 0.0752 0.0358 0.0215 0.0115\n", "polo shirt/sport shirt 141 371 0.0493 0.124 0.0301 0.024\n", " poncho 2 10 1 0 0 0\n", " pony 12 24 1 0 0.0257 0.0236\n", "pool table/billiard table/snooker table 1 1 1 0 0 0\n", "pop/pop soda/soda/soda pop/tonic/soft drink 42 217 0.176 0.023 0.0212 0.0187\n", "postbox/postbox public/mailbox/mailbox public 10 12 0 0 0.0136 0.00534\n", " poster/placard 163 589 0.103 0.329 0.0901 0.0734\n", " pot 96 282 0.233 0.411 0.21 0.123\n", " flowerpot 264 850 0.283 0.366 0.26 0.187\n", " potato 62 683 0.0827 0.19 0.0451 0.0346\n", " potholder 7 12 0.142 0.0833 0.0281 0.0225\n", " pottery/clayware 6 95 0 0 0.00596 0.00542\n", " pouch 10 18 1 0 0 0\n", "power shovel/excavator/digger 2 4 0 0 0 0\n", " prawn/shrimp 13 111 0.156 0.00901 0.00934 0.00779\n", " pretzel 2 13 1 0 0 0\n", "printer/printing machine 55 59 0.191 0.254 0.189 0.141\n", "projectile/projectile weapon/missile 7 15 1 0 0.00336 0.00264\n", " projector 14 15 1 0 0.015 0.00992\n", " propeller/propellor 120 212 0.47 0.243 0.252 0.132\n", " puffin 1 3 1 0 0.0731 0.0709\n", " pumpkin 13 422 0.387 0.045 0.074 0.0558\n", " puppy 9 14 1 0 0.0113 0.00925\n", " quiche 1 1 1 0 0 0\n", " quilt/comforter 71 92 0.128 0.391 0.0934 0.0651\n", " rabbit 9 14 1 0 0.0105 0.0103\n", " racket/racquet 7 20 0 0 0.0131 0.0108\n", " radiator 35 41 0.218 0.439 0.321 0.281\n", "radio receiver/radio set/radio/tuner/tuner radio 21 23 0 0 0.00831 0.00566\n", " radish/daikon 14 184 0.389 0.0109 0.0505 0.0289\n", " raft 9 40 0 0 0.00831 0.00544\n", "raincoat/waterproof jacket 9 25 0.113 0.04 0.0561 0.0462\n", " ram/ram animal 12 49 0 0 0.0583 0.0476\n", " raspberry 16 246 0.223 0.341 0.205 0.138\n", " rat 2 2 1 0 0 0\n", " razorblade 5 6 1 0 0 0\n", "reamer/reamer juicer/juicer/juice reamer 5 5 0 0 0 0\n", " rearview mirror 197 571 0.134 0.172 0.0487 0.0272\n", " receipt 7 8 0.127 0.125 0.0359 0.0347\n", "recliner/reclining chair/lounger/lounger chair 4 5 1 0 0.00748 0.00673\n", "record player/phonograph/phonograph record player/turntable 4 4 1 0 0.224 0.169\n", " reflector 121 639 0.151 0.0939 0.0523 0.0324\n", " remote control 233 483 0.237 0.35 0.233 0.184\n", " rhinoceros 5 7 1 0 0.00276 0.00196\n", " ring 274 375 0.46 0.16 0.132 0.06\n", " river boat 1 2 1 0 0.0135 0.0108\n", " road map 1 1 1 0 0 0\n", " robe 5 10 0 0 0.000806 0.000725\n", " rocking chair 13 15 0.134 0.133 0.162 0.152\n", " roller skate 1 1 1 0 0 0\n", " Rollerblade 2 6 1 0 0.087 0.0688\n", " rolling pin 11 13 0.232 0.0769 0.0824 0.0805\n", "router/router computer equipment 6 10 1 0 0 0\n", "rubber band/elastic band 59 94 0.133 0.0106 0.0115 0.0066\n", " runner/runner carpet 3 4 1 0 0 0\n", " plastic bag/paper bag 275 738 0.162 0.182 0.0757 0.0526\n", "saddle/saddle on an animal 112 209 0.402 0.0574 0.154 0.0523\n", "saddle blanket/saddlecloth/horse blanket 58 103 0.219 0.233 0.133 0.0633\n", " saddlebag 6 12 0 0 0.0382 0.0265\n", " sail 47 160 0.335 0.175 0.15 0.105\n", " salad 27 53 0.2 0.189 0.126 0.105\n", " salami 3 33 0 0 0.000778 0.000556\n", " salmon/salmon fish 2 2 1 0 0 0\n", " salmon/salmon food 2 6 1 0 0 0\n", " salsa 2 3 1 0 0 0\n", " saltshaker 77 121 0.206 0.306 0.17 0.133\n", "sandal/sandal type of shoe 175 507 0.208 0.258 0.128 0.0786\n", " sandwich 154 400 0.257 0.355 0.221 0.161\n", " satchel 1 2 1 0 0 0\n", " saucepan 2 12 1 0 0.0205 0.0144\n", " saucer 48 126 0.176 0.278 0.165 0.142\n", " sausage 52 546 0.134 0.293 0.0826 0.0592\n", " sawhorse/sawbuck 1 2 1 0 0 0\n", "scale/scale measuring instrument 37 46 0 0 0.00341 0.00315\n", " scarecrow/strawman 1 1 1 0 0 0\n", " scarf 164 259 0.149 0.0849 0.0549 0.0345\n", " school bus 18 39 0 0 0.0465 0.0367\n", " scissors 147 269 0.333 0.301 0.261 0.22\n", " scoreboard 26 33 0.132 0.0303 0.0505 0.0271\n", " screwdriver 13 64 1 0 0.00123 0.000983\n", " scrubbing brush 25 28 0.125 0.0714 0.0404 0.0184\n", " sculpture 14 30 0.159 0.0333 0.0168 0.00848\n", " seabird/seafowl 3 4 0 0 0.0567 0.0561\n", " seahorse 1 4 1 0 0 0\n", " seashell 9 55 1 0 0.000412 0.000247\n", " sewing machine 4 4 1 0 0.126 0.0126\n", " shaker 5 8 1 0 0.00568 0.00511\n", " shampoo 28 71 0.191 0.211 0.0962 0.0644\n", " shark 5 9 1 0 0 0\n", " sharpener 1 1 1 0 0 0\n", " Sharpie 2 2 1 0 0 0\n", "shaver/shaver electric/electric shaver/electric razor 2 3 0 0 0 0\n", "shaving cream/shaving soap 5 5 1 0 0.00993 0.00794\n", " shawl 1 1 1 0 0 0\n", " shears 3 4 1 0 0 0\n", " sheep 191 2599 0.462 0.443 0.392 0.26\n", " shepherd dog/sheepdog 1 1 1 0 0 0\n", " shield 6 26 1 0 0 0\n", " shirt 341 1423 0.051 0.184 0.0349 0.026\n", "shoe/sneaker/sneaker type of shoe/tennis shoe 381 1970 0.101 0.277 0.0642 0.0407\n", " shopping bag 30 70 0.0237 0.0143 0.0291 0.0197\n", " shopping cart 8 17 0.251 0.0588 0.0422 0.0309\n", "short pants/shorts/shorts clothing/trunks/trunks clothing 379 1072 0.177 0.49 0.151 0.116\n", " shot glass 4 36 1 0 0 0\n", " shoulder bag 30 61 1 0 0.0323 0.0277\n", " shovel 14 17 1 0 0 0\n", " shower head 72 90 0.546 0.189 0.219 0.154\n", " shower curtain 74 99 0.262 0.596 0.366 0.315\n", " signboard 398 1799 0.147 0.297 0.103 0.0731\n", " silo 8 12 0 0 0.051 0.0451\n", " sink 334 439 0.413 0.642 0.493 0.398\n", " skateboard 361 645 0.479 0.544 0.413 0.299\n", " skewer 5 36 1 0 0 0\n", " ski 377 1491 0.457 0.266 0.265 0.161\n", " ski boot 311 1371 0.479 0.412 0.372 0.188\n", " ski parka/ski jacket 75 320 0.152 0.519 0.141 0.1\n", " ski pole 366 1507 0.624 0.366 0.387 0.204\n", " skirt 218 366 0.204 0.495 0.257 0.198\n", " sled/sledge/sleigh 6 7 1 0 0.00352 0.00282\n", " sleeping bag 3 4 1 0 0 0\n", "slipper/slipper footwear/carpet slipper/carpet slipper footwear 13 30 0 0 0.00586 0.00488\n", " smoothie 2 3 1 0 0 0\n", " snowboard 194 350 0.345 0.451 0.347 0.273\n", " snowman 6 7 1 0 0 0\n", " snowmobile 1 6 1 0 0.0222 0.0068\n", " soap 130 263 0.274 0.179 0.144 0.104\n", " soccer ball 75 105 0.297 0.733 0.625 0.565\n", " sock 389 1408 0.3 0.413 0.213 0.137\n", " sofa/couch/lounge 414 528 0.404 0.723 0.524 0.43\n", " softball 1 1 1 0 0.00995 0.00995\n", "solar array/solar battery/solar panel 6 8 1 0 0 0\n", " sombrero 1 32 1 0 0 0\n", " soup 45 55 0.174 0.491 0.19 0.161\n", " soupspoon 7 12 1 0 0.00215 0.00172\n", "sour cream/soured cream 3 3 1 0 0.0484 0.0445\n", " space shuttle 2 2 1 0 0 0\n", "sparkler/sparkler fireworks 1 3 1 0 0 0\n", " spatula 65 116 0.109 0.147 0.0439 0.025\n", " spear/lance 1 2 1 0 0 0\n", "spectacles/specs/eyeglasses/glasses 334 518 0.196 0.425 0.131 0.073\n", " spice rack 11 14 0.674 0.0714 0.121 0.106\n", " spider 1 1 1 0 0 0\n", " sponge 13 18 0.0641 0.0556 0.0427 0.0348\n", " spoon 227 426 0.205 0.279 0.135 0.1\n", "sportswear/athletic wear/activewear 1 2 1 0 0 0\n", " spotlight 11 71 1 0 0.00789 0.00392\n", " squirrel 2 2 1 0 0 0\n", "stapler/stapler stapling machine 8 8 0 0 0.00739 0.00709\n", " starfish/sea star 2 2 0 0 0.00292 0.00233\n", "statue/statue sculpture 119 428 0.301 0.266 0.177 0.093\n", " steak/steak food 14 20 0.162 0.4 0.189 0.12\n", " steering wheel 125 155 0.293 0.0839 0.0831 0.0582\n", " stepladder 5 5 1 0 0 0\n", " step stool 5 6 1 0 0 0\n", "stereo/stereo sound system 13 19 1 0 0.00231 0.00173\n", " stirrer 4 5 1 0 0.0715 0.0478\n", " stirrup 48 83 0.239 0.301 0.198 0.112\n", " stool 63 128 0.239 0.367 0.261 0.222\n", " stop sign 170 216 0.402 0.644 0.466 0.428\n", " brake light 45 210 0.0613 0.0524 0.0192 0.0135\n", "stove/kitchen stove/range/range kitchen appliance/kitchen range/cooking stove 209 230 0.359 0.461 0.294 0.228\n", " strainer 13 20 0 0 0.00704 0.00369\n", " strap 278 1026 0.065 0.00877 0.00923 0.00442\n", "straw/straw for drinking/drinking straw 116 226 0.239 0.111 0.0868 0.0439\n", " strawberry 72 864 0.224 0.25 0.143 0.0855\n", " street sign 367 1628 0.198 0.365 0.162 0.126\n", "streetlight/street lamp 369 1606 0.14 0.0523 0.0383 0.0212\n", " string cheese 1 1 1 0 0 0\n", " subwoofer 3 3 0 0 0.00319 0.00219\n", " sugar bowl 4 4 1 0 0 0\n", " suit/suit clothing 18 51 0.0363 0.353 0.0328 0.024\n", " sunflower 17 86 0.0259 0.00543 0.0119 0.00772\n", " sunglasses 384 1488 0.243 0.114 0.0658 0.0346\n", " sunhat 14 48 0 0 0.0256 0.0171\n", " surfboard 355 707 0.413 0.46 0.319 0.221\n", " sushi 4 36 0 0 0.0182 0.0173\n", " mop 8 11 1 0 0.0112 0.0111\n", " sweat pants 5 7 1 0 0.0047 0.00433\n", " sweatband 17 37 0.0575 0.216 0.032 0.0252\n", " sweater 193 365 0.112 0.255 0.0662 0.0494\n", " sweatshirt 115 258 0.0606 0.0814 0.0304 0.0239\n", " sweet potato 5 23 1 0 0.00974 0.00892\n", "swimsuit/swimwear/bathing suit/swimming costume/bathing costume/swimming trunks/bathing trunks 129 485 0.225 0.198 0.0985 0.0618\n", " sword 11 14 1 0 0 0\n", " syringe 1 1 1 0 0 0\n", " Tabasco sauce 1 1 1 0 0 0\n", "table-tennis table/ping-pong table 2 3 1 0 0 0\n", " table 371 595 0.0883 0.323 0.0596 0.0439\n", " table lamp 12 20 0.0191 0.05 0.0114 0.00954\n", " tablecloth 311 501 0.199 0.47 0.237 0.171\n", " tachometer 1 3 1 0 0 0\n", " tag 263 1186 0.169 0.214 0.0958 0.0671\n", " taillight/rear light 352 1637 0.279 0.196 0.117 0.067\n", " tambourine 1 1 1 0 0 0\n", "tank/tank storage vessel/storage tank 20 65 1 0 0.00808 0.00503\n", "tank top/tank top clothing 209 337 0.187 0.472 0.205 0.155\n", "tape/tape sticky cloth or paper 22 42 1 0 0.00103 0.00091\n", "tape measure/measuring tape 7 7 1 0 0 0\n", " tapestry 4 9 0 0 0.00861 0.00755\n", " tarp 89 204 0.123 0.152 0.0513 0.0366\n", " tartan/plaid 4 14 1 0 0 0\n", " tassel 11 34 1 0 0.000697 0.000209\n", " tea bag 2 4 1 0 0 0\n", " teacup 9 35 1 0 0.00483 0.00459\n", " teakettle 4 4 0.046 0.5 0.0443 0.0436\n", " teapot 25 38 0.121 0.158 0.0551 0.0371\n", " teddy bear 301 1029 0.603 0.423 0.428 0.307\n", "telephone/phone/telephone set 176 203 0.216 0.158 0.104 0.0651\n", "telephone booth/phone booth/call box/telephone box/telephone kiosk 8 10 1 0 0.0728 0.0662\n", "telephone pole/telegraph pole/telegraph post 183 663 0.213 0.163 0.101 0.0622\n", "television camera/tv camera 4 7 1 0 0 0\n", "television set/tv/tv set 369 397 0.385 0.783 0.61 0.525\n", " tennis ball 253 448 0.527 0.528 0.441 0.316\n", " tennis racket 387 576 0.487 0.659 0.484 0.35\n", " thermometer 5 5 1 0 0.00491 0.00491\n", " thermos bottle 7 7 1 0 0.00321 0.00289\n", " thermostat 25 25 0.128 0.12 0.0434 0.027\n", " thread/yarn 13 62 1 0 0 0\n", "thumbtack/drawing pin/pushpin 3 20 1 0 0 0\n", " tiara 5 10 1 0 0.0194 0.0162\n", " tiger 7 10 1 0 0 0\n", "tights/tights clothing/leotards 10 13 1 0 0.00543 0.00314\n", " timer/stopwatch 11 15 1 0 0.00231 0.00185\n", " tinfoil 59 82 0.194 0.171 0.124 0.0911\n", " tinsel 5 6 1 0 0.00521 0.00521\n", " tissue paper 48 84 0.0582 0.0952 0.0264 0.0191\n", " toast/toast food 13 36 1 0 0.0122 0.0107\n", " toaster 54 69 0.198 0.275 0.18 0.132\n", " toaster oven 13 13 0.101 0.385 0.108 0.0979\n", " toilet 357 629 0.493 0.548 0.403 0.353\n", "toilet tissue/toilet paper/bathroom tissue 212 349 0.382 0.438 0.37 0.263\n", " tomato 248 2107 0.194 0.355 0.188 0.138\n", " tongs 26 44 0.148 0.0682 0.0592 0.0202\n", " toolbox 7 7 1 0 0 0\n", " toothbrush 139 276 0.226 0.257 0.157 0.0978\n", " toothpaste 35 50 0.0547 0.02 0.0253 0.017\n", " toothpick 21 101 0.111 0.099 0.0362 0.0254\n", " cover 25 49 0.0107 0.0408 0.00977 0.0081\n", " tortilla 4 11 1 0 0.00138 0.00138\n", " tow truck 4 4 0 0 0.00562 0.00523\n", " towel 118 427 0.137 0.201 0.0655 0.0476\n", "towel rack/towel rail/towel bar 112 191 0.289 0.277 0.183 0.115\n", " toy 213 943 0.197 0.134 0.0973 0.0579\n", "tractor/tractor farm equipment 11 15 0.193 0.133 0.11 0.0986\n", " traffic light 397 1551 0.467 0.372 0.311 0.2\n", " dirt bike 6 9 0 0 0.0999 0.0806\n", "trailer truck/tractor trailer/trucking rig/articulated lorry/semi truck 27 72 0.0756 0.208 0.0582 0.0465\n", "train/train railroad vehicle/railroad train 351 506 0.489 0.628 0.433 0.324\n", " trampoline 3 4 1 0 0 0\n", " tray 154 472 0.153 0.208 0.0959 0.0669\n", " trench coat 1 1 1 0 0.0112 0.0101\n", " tricycle 5 7 1 0 0.00376 0.00301\n", " tripod 21 24 0.363 0.262 0.194 0.119\n", "trousers/pants/pants clothing 390 1416 0.0752 0.309 0.0533 0.0373\n", " truck 185 343 0.162 0.347 0.123 0.0885\n", " trunk 10 141 0.324 0.0922 0.148 0.115\n", " turban 5 35 1 0 0.00183 0.00132\n", " turkey/turkey food 8 9 1 0 0 0\n", " turnip 2 20 1 0 0 0\n", " turtle 5 5 1 0 0 0\n", "turtleneck/turtleneck clothing/polo-neck 1 1 1 0 0 0\n", " typewriter 2 2 1 0 0.00906 0.00634\n", " umbrella 397 1777 0.421 0.364 0.287 0.184\n", "underwear/underclothes/underclothing/underpants 11 13 1 0 0.000696 0.000369\n", " urinal 39 237 0.463 0.274 0.252 0.197\n", " urn 2 5 1 0 0.0103 0.0103\n", " vacuum cleaner 11 13 1 0 0.0915 0.0749\n", " vase 388 1055 0.41 0.509 0.432 0.345\n", " vending machine 12 23 0.0972 0.0435 0.0473 0.0471\n", "vent/blowhole/air vent 272 583 0.164 0.247 0.113 0.0801\n", " vest/waistcoat 94 160 0.167 0.184 0.0998 0.0642\n", " videotape 2 38 1 0 0.0156 0.00613\n", " vinegar 3 3 1 0 0.0269 0.0169\n", " violin/fiddle 2 4 1 0 0 0\n", " volleyball 3 9 0 0 0 0\n", " vulture 1 5 1 0 0.069 0.0673\n", " waffle 11 22 1 0 0.0542 0.0419\n", " waffle iron 1 1 1 0 0 0\n", " wagon 9 19 0 0 0.00347 0.00249\n", " wagon wheel 9 54 0.0534 0.0185 0.0234 0.0172\n", " walking stick 4 4 1 0 0 0\n", " wall clock 16 19 0.0791 0.263 0.0481 0.0461\n", "wall socket/wall plug/electric outlet/electrical outlet/outlet/electric receptacle 361 620 0.274 0.435 0.255 0.181\n", " wallet/billfold 24 29 0.0745 0.103 0.047 0.0426\n", "washbasin/basin/basin for washing/washbowl/washstand/handbasin 2 2 1 0 0.00453 0.00453\n", "automatic washer/washing machine 10 10 0.248 0.1 0.129 0.121\n", " watch/wristwatch 368 551 0.294 0.335 0.189 0.115\n", " water bottle 141 281 0.144 0.249 0.123 0.0986\n", " water cooler 9 12 1 0 0.0105 0.0078\n", "water faucet/water tap/tap/tap water faucet 15 20 0 0 0.0205 0.0113\n", "water heater/hot-water heater 2 2 1 0 0 0\n", " water jug 2 4 1 0 0 0\n", "water scooter/sea scooter/jet ski 3 7 1 0 0 0\n", " water ski 5 7 0.263 0.429 0.348 0.228\n", " water tower 10 13 1 0 0.007 0.0063\n", " watering can 5 5 0 0 0 0\n", " watermelon 18 99 0.0697 0.0707 0.0269 0.0231\n", "weathervane/vane/vane weathervane/wind vane 39 50 0.27 0.54 0.268 0.14\n", " webcam 11 13 1 0 0.0673 0.0482\n", "wedding cake/bridecake 19 20 0.19 0.45 0.19 0.12\n", "wedding ring/wedding band 6 8 1 0 0.00562 0.00199\n", " wet suit 252 443 0.476 0.707 0.614 0.432\n", " wheel 375 2265 0.115 0.313 0.0666 0.042\n", " wheelchair 10 13 0.292 0.154 0.0888 0.0557\n", " whipped cream 12 21 0 0 0.0214 0.0131\n", " whistle 1 1 1 0 0 0\n", " wig 8 11 1 0 0.0197 0.0165\n", " wind chime 2 2 1 0 0 0\n", " windmill 4 5 0 0 0.00256 0.00218\n", "window box/window box for plants 14 25 0.226 0.04 0.0108 0.00751\n", "windshield wiper/windscreen wiper/wiper/wiper for windshield or screen 297 791 0.316 0.287 0.182 0.101\n", "windsock/air sock/air-sleeve/wind sleeve/wind cone 6 6 0 0 0.0187 0.0182\n", " wine bottle 119 762 0.219 0.407 0.199 0.142\n", "wine bucket/wine cooler 5 9 1 0 0.00508 0.00484\n", " wineglass 197 911 0.414 0.436 0.333 0.244\n", "blinder/blinder for horses 21 49 1 0 0.0438 0.0245\n", " wok 5 8 1 0 0.0364 0.0206\n", " wolf 2 5 1 0 0 0\n", " wooden spoon 13 20 0.281 0.05 0.0316 0.018\n", " wreath 14 21 0 0 0.0279 0.0203\n", " wrench/spanner 14 80 1 0 0.00704 0.00513\n", " wristband 25 42 0.0876 0.429 0.0711 0.0573\n", " wristlet/wrist band 128 261 0.174 0.379 0.138 0.101\n", "yogurt/yoghurt/yoghourt 7 9 0.0782 0.222 0.0362 0.0346\n", "yoke/yoke animal equipment 3 4 1 0 0 0\n", " zebra 325 1037 0.833 0.75 0.818 0.65\n", " zucchini/courgette 17 178 0.0896 0.124 0.0417 0.0317\n", "Speed: 0.1ms preprocess, 4.5ms inference, 0.0ms loss, 8.3ms postprocess per image\n", "Saving runs\\detect\\train\\predictions.json...\n", "\n", "Evaluating lvis mAP using runs\\detect\\train\\predictions.json and C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\annotations\\lvis_v1_val.json...\n", "\u001b[31m\u001b[1mrequirements:\u001b[0m Ultralytics requirement ['lvis>=0.5.3'] not found, attempting AutoUpdate...\n", "Collecting lvis>=0.5.3\n", " Downloading lvis-0.5.3-py3-none-any.whl.metadata (856 bytes)\n", "Requirement already satisfied: cycler>=0.10.0 in c:\\users\\user\\appdata\\roaming\\python\\python39\\site-packages (from lvis>=0.5.3) (0.10.0)\n", "Requirement already satisfied: Cython>=0.29.12 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (3.0.10)\n", "Requirement already satisfied: kiwisolver>=1.1.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (1.4.5)\n", "Requirement already satisfied: matplotlib>=3.1.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (3.9.0)\n", "Requirement already satisfied: numpy>=1.18.2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (1.26.4)\n", "Requirement already satisfied: opencv-python>=4.1.0.25 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (4.9.0.80)\n", "Requirement already satisfied: pyparsing>=2.4.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (3.1.2)\n", "Requirement already satisfied: python-dateutil>=2.8.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (2.9.0)\n", "Requirement already satisfied: six>=1.12.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (1.16.0)\n", "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (1.2.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (4.52.4)\n", "Requirement already satisfied: packaging>=20.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (24.0)\n", "Requirement already satisfied: pillow>=8 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (10.3.0)\n", "Requirement already satisfied: importlib-resources>=3.2.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (6.4.0)\n", "Requirement already satisfied: zipp>=3.1.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from importlib-resources>=3.2.0->matplotlib>=3.1.1->lvis>=0.5.3) (3.17.0)\n", "Downloading lvis-0.5.3-py3-none-any.whl (14 kB)\n", "Installing collected packages: lvis\n", "Successfully installed lvis-0.5.3\n", "\n", "\u001b[31m\u001b[1mrequirements:\u001b[0m AutoUpdate success 4.7s, installed 1 package: ['lvis>=0.5.3']\n", "\u001b[31m\u001b[1mrequirements:\u001b[0m \u001b[1mRestart runtime or rerun command for updates to take effect\u001b[0m\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "[07/15 08:29:29] lvis.results WARNING: Assuming user provided the results in correct format.\n" ] } ], "source": [ "# train the model on the lvis dataset\n", "results = model.train(data='lvis.yaml', epochs=10, save=True, plots=True, device=0, val=True, imgsz=640)" ] } ], "metadata": { "kernelspec": { "display_name": "detr", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 2 }