Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,121 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import math

from mmcv.cnn import build_conv_layer, build_norm_layer

from ..builder import BACKBONES
from ..utils import ResLayer
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet


class Bottleneck(_Bottleneck):
    """Bottleneck block for ResNeXt.

    If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is
    "caffe", the stride-two layer is the first 1x1 conv layer.
    """

    def __init__(self,
                 inplanes,
                 planes,
                 groups=1,
                 base_width=4,
                 base_channels=64,
                 **kwargs):
        super(Bottleneck, self).__init__(inplanes, planes, **kwargs)

        if groups == 1:
            width = self.planes
        else:
            width = math.floor(self.planes *
                               (base_width / base_channels)) * groups

        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, width, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            self.norm_cfg, width, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            self.norm_cfg, self.planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            self.inplanes,
            width,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                self.conv_cfg,
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(
                self.dcn,
                width,
                width,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=self.dilation,
                dilation=self.dilation,
                groups=groups,
                bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            self.conv_cfg,
            width,
            self.planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)


@BACKBONES.register_module()
class ResNeXt(ResNet):
    """ResNeXt backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        in_channels (int): Number of input image channels. Normally 3.
        num_stages (int): Resnet stages, normally 4.
        groups (int): Group of resnext.
        base_width (int): Base width of resnext.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        norm_cfg (dict): dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        zero_init_residual (bool): whether to use zero init for last norm layer
            in resblocks to let them behave as identity.

    Example:
        >>> from mmseg.models import ResNeXt
        >>> import torch
        >>> self = ResNeXt(depth=50)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 256, 8, 8)
        (1, 512, 4, 4)
        (1, 1024, 2, 2)
        (1, 2048, 1, 1)
    """

    arch_settings = {
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self, groups=1, base_width=4, **kwargs):
        self.groups = groups
        self.base_width = base_width
        super(ResNeXt, self).__init__(**kwargs)

    def make_res_layer(self, **kwargs):
        """Pack all blocks in a stage into a ``ResLayer``"""
        return ResLayer(
            groups=self.groups,
            base_width=self.base_width,
            base_channels=self.base_channels,
            **kwargs)