Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 6,795 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
from functools import partial

import mmcv
import numpy as np
import onnxruntime as rt
import torch
import torch._C
import torch.serialization
from mmcv.onnx import register_extra_symbolics
from mmcv.runner import load_checkpoint
from torch import nn

from mmseg.models import build_segmentor

torch.manual_seed(3)


def _convert_batchnorm(module):
    module_output = module
    if isinstance(module, torch.nn.SyncBatchNorm):
        module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
                                             module.momentum, module.affine,
                                             module.track_running_stats)
        if module.affine:
            module_output.weight.data = module.weight.data.clone().detach()
            module_output.bias.data = module.bias.data.clone().detach()
            # keep requires_grad unchanged
            module_output.weight.requires_grad = module.weight.requires_grad
            module_output.bias.requires_grad = module.bias.requires_grad
        module_output.running_mean = module.running_mean
        module_output.running_var = module.running_var
        module_output.num_batches_tracked = module.num_batches_tracked
    for name, child in module.named_children():
        module_output.add_module(name, _convert_batchnorm(child))
    del module
    return module_output


def _demo_mm_inputs(input_shape, num_classes):
    """Create a superset of inputs needed to run test or train batches.

    Args:
        input_shape (tuple):
            input batch dimensions
        num_classes (int):
            number of semantic classes
    """
    (N, C, H, W) = input_shape
    rng = np.random.RandomState(0)
    imgs = rng.rand(*input_shape)
    segs = rng.randint(
        low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
    img_metas = [{
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False,
    } for _ in range(N)]
    mm_inputs = {
        'imgs': torch.FloatTensor(imgs).requires_grad_(True),
        'img_metas': img_metas,
        'gt_semantic_seg': torch.LongTensor(segs)
    }
    return mm_inputs


def pytorch2onnx(model,
                 input_shape,
                 opset_version=11,
                 show=False,
                 output_file='tmp.onnx',
                 verify=False):
    """Export Pytorch model to ONNX model and verify the outputs are same
    between Pytorch and ONNX.

    Args:
        model (nn.Module): Pytorch model we want to export.
        input_shape (tuple): Use this input shape to construct
            the corresponding dummy input and execute the model.
        opset_version (int): The onnx op version. Default: 11.
        show (bool): Whether print the computation graph. Default: False.
        output_file (string): The path to where we store the output ONNX model.
            Default: `tmp.onnx`.
        verify (bool): Whether compare the outputs between Pytorch and ONNX.
            Default: False.
    """
    model.cpu().eval()

    if isinstance(model.decode_head, nn.ModuleList):
        num_classes = model.decode_head[-1].num_classes
    else:
        num_classes = model.decode_head.num_classes

    mm_inputs = _demo_mm_inputs(input_shape, num_classes)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    img_list = [img[None, :] for img in imgs]
    img_meta_list = [[img_meta] for img_meta in img_metas]

    # replace original forward function
    origin_forward = model.forward
    model.forward = partial(
        model.forward, img_metas=img_meta_list, return_loss=False)

    register_extra_symbolics(opset_version)
    with torch.no_grad():
        torch.onnx.export(
            model, (img_list, ),
            output_file,
            export_params=True,
            keep_initializers_as_inputs=True,
            verbose=show,
            opset_version=opset_version)
        print(f'Successfully exported ONNX model: {output_file}')
    model.forward = origin_forward

    if verify:
        # check by onnx
        import onnx
        onnx_model = onnx.load(output_file)
        onnx.checker.check_model(onnx_model)

        # check the numerical value
        # get pytorch output
        pytorch_result = model(img_list, img_meta_list, return_loss=False)[0]

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 1)
        sess = rt.InferenceSession(output_file)
        onnx_result = sess.run(
            None, {net_feed_input[0]: img_list[0].detach().numpy()})[0]
        if not np.allclose(pytorch_result, onnx_result):
            raise ValueError(
                'The outputs are different between Pytorch and ONNX')
        print('The outputs are same between Pytorch and ONNX')


def parse_args():
    parser = argparse.ArgumentParser(description='Convert MMSeg to ONNX')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('--checkpoint', help='checkpoint file', default=None)
    parser.add_argument('--show', action='store_true', help='show onnx graph')
    parser.add_argument(
        '--verify', action='store_true', help='verify the onnx model')
    parser.add_argument('--output-file', type=str, default='tmp.onnx')
    parser.add_argument('--opset-version', type=int, default=11)
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=[256, 256],
        help='input image size')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (1, 3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (
            1,
            3,
        ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = mmcv.Config.fromfile(args.config)
    cfg.model.pretrained = None

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    segmentor = build_segmentor(
        cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
    # convert SyncBN to BN
    segmentor = _convert_batchnorm(segmentor)

    if args.checkpoint:
        load_checkpoint(segmentor, args.checkpoint, map_location='cpu')

    # conver model to onnx file
    pytorch2onnx(
        segmentor,
        input_shape,
        opset_version=args.opset_version,
        show=args.show,
        output_file=args.output_file,
        verify=args.verify)