|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint as cp |
|
from mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer, |
|
constant_init, kaiming_init) |
|
from mmcv.runner import load_checkpoint |
|
from mmcv.utils.parrots_wrapper import _BatchNorm |
|
|
|
from mmseg.utils import get_root_logger |
|
from ..builder import BACKBONES |
|
|
|
|
|
class GlobalContextExtractor(nn.Module): |
|
"""Global Context Extractor for CGNet. |
|
|
|
This class is employed to refine the joFint feature of both local feature |
|
and surrounding context. |
|
|
|
Args: |
|
channel (int): Number of input feature channels. |
|
reduction (int): Reductions for global context extractor. Default: 16. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
def __init__(self, channel, reduction=16, with_cp=False): |
|
super(GlobalContextExtractor, self).__init__() |
|
self.channel = channel |
|
self.reduction = reduction |
|
assert reduction >= 1 and channel >= reduction |
|
self.with_cp = with_cp |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), |
|
nn.Linear(channel // reduction, channel), nn.Sigmoid()) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
num_batch, num_channel = x.size()[:2] |
|
y = self.avg_pool(x).view(num_batch, num_channel) |
|
y = self.fc(y).view(num_batch, num_channel, 1, 1) |
|
return x * y |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|
|
|
|
class ContextGuidedBlock(nn.Module): |
|
"""Context Guided Block for CGNet. |
|
|
|
This class consists of four components: local feature extractor, |
|
surrounding feature extractor, joint feature extractor and global |
|
context extractor. |
|
|
|
Args: |
|
in_channels (int): Number of input feature channels. |
|
out_channels (int): Number of output feature channels. |
|
dilation (int): Dilation rate for surrounding context extractor. |
|
Default: 2. |
|
reduction (int): Reduction for global context extractor. Default: 16. |
|
skip_connect (bool): Add input to output or not. Default: True. |
|
downsample (bool): Downsample the input to 1/2 or not. Default: False. |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN', requires_grad=True). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='PReLU'). |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
dilation=2, |
|
reduction=16, |
|
skip_connect=True, |
|
downsample=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
act_cfg=dict(type='PReLU'), |
|
with_cp=False): |
|
super(ContextGuidedBlock, self).__init__() |
|
self.with_cp = with_cp |
|
self.downsample = downsample |
|
|
|
channels = out_channels if downsample else out_channels // 2 |
|
if 'type' in act_cfg and act_cfg['type'] == 'PReLU': |
|
act_cfg['num_parameters'] = channels |
|
kernel_size = 3 if downsample else 1 |
|
stride = 2 if downsample else 1 |
|
padding = (kernel_size - 1) // 2 |
|
|
|
self.conv1x1 = ConvModule( |
|
in_channels, |
|
channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
|
|
self.f_loc = build_conv_layer( |
|
conv_cfg, |
|
channels, |
|
channels, |
|
kernel_size=3, |
|
padding=1, |
|
groups=channels, |
|
bias=False) |
|
self.f_sur = build_conv_layer( |
|
conv_cfg, |
|
channels, |
|
channels, |
|
kernel_size=3, |
|
padding=dilation, |
|
groups=channels, |
|
dilation=dilation, |
|
bias=False) |
|
|
|
self.bn = build_norm_layer(norm_cfg, 2 * channels)[1] |
|
self.activate = nn.PReLU(2 * channels) |
|
|
|
if downsample: |
|
self.bottleneck = build_conv_layer( |
|
conv_cfg, |
|
2 * channels, |
|
out_channels, |
|
kernel_size=1, |
|
bias=False) |
|
|
|
self.skip_connect = skip_connect and not downsample |
|
self.f_glo = GlobalContextExtractor(out_channels, reduction, with_cp) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
out = self.conv1x1(x) |
|
loc = self.f_loc(out) |
|
sur = self.f_sur(out) |
|
|
|
joi_feat = torch.cat([loc, sur], 1) |
|
joi_feat = self.bn(joi_feat) |
|
joi_feat = self.activate(joi_feat) |
|
if self.downsample: |
|
joi_feat = self.bottleneck(joi_feat) |
|
|
|
out = self.f_glo(joi_feat) |
|
|
|
if self.skip_connect: |
|
return x + out |
|
else: |
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|
|
|
|
class InputInjection(nn.Module): |
|
"""Downsampling module for CGNet.""" |
|
|
|
def __init__(self, num_downsampling): |
|
super(InputInjection, self).__init__() |
|
self.pool = nn.ModuleList() |
|
for i in range(num_downsampling): |
|
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1)) |
|
|
|
def forward(self, x): |
|
for pool in self.pool: |
|
x = pool(x) |
|
return x |
|
|
|
|
|
@BACKBONES.register_module() |
|
class CGNet(nn.Module): |
|
"""CGNet backbone. |
|
|
|
A Light-weight Context Guided Network for Semantic Segmentation |
|
arXiv: https://arxiv.org/abs/1811.08201 |
|
|
|
Args: |
|
in_channels (int): Number of input image channels. Normally 3. |
|
num_channels (tuple[int]): Numbers of feature channels at each stages. |
|
Default: (32, 64, 128). |
|
num_blocks (tuple[int]): Numbers of CG blocks at stage 1 and stage 2. |
|
Default: (3, 21). |
|
dilations (tuple[int]): Dilation rate for surrounding context |
|
extractors at stage 1 and stage 2. Default: (2, 4). |
|
reductions (tuple[int]): Reductions for global context extractors at |
|
stage 1 and stage 2. Default: (8, 16). |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN', requires_grad=True). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='PReLU'). |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=3, |
|
num_channels=(32, 64, 128), |
|
num_blocks=(3, 21), |
|
dilations=(2, 4), |
|
reductions=(8, 16), |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
act_cfg=dict(type='PReLU'), |
|
norm_eval=False, |
|
with_cp=False): |
|
|
|
super(CGNet, self).__init__() |
|
self.in_channels = in_channels |
|
self.num_channels = num_channels |
|
assert isinstance(self.num_channels, tuple) and len( |
|
self.num_channels) == 3 |
|
self.num_blocks = num_blocks |
|
assert isinstance(self.num_blocks, tuple) and len(self.num_blocks) == 2 |
|
self.dilations = dilations |
|
assert isinstance(self.dilations, tuple) and len(self.dilations) == 2 |
|
self.reductions = reductions |
|
assert isinstance(self.reductions, tuple) and len(self.reductions) == 2 |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
if 'type' in self.act_cfg and self.act_cfg['type'] == 'PReLU': |
|
self.act_cfg['num_parameters'] = num_channels[0] |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
|
|
cur_channels = in_channels |
|
self.stem = nn.ModuleList() |
|
for i in range(3): |
|
self.stem.append( |
|
ConvModule( |
|
cur_channels, |
|
num_channels[0], |
|
3, |
|
2 if i == 0 else 1, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg)) |
|
cur_channels = num_channels[0] |
|
|
|
self.inject_2x = InputInjection(1) |
|
self.inject_4x = InputInjection(2) |
|
|
|
cur_channels += in_channels |
|
self.norm_prelu_0 = nn.Sequential( |
|
build_norm_layer(norm_cfg, cur_channels)[1], |
|
nn.PReLU(cur_channels)) |
|
|
|
|
|
self.level1 = nn.ModuleList() |
|
for i in range(num_blocks[0]): |
|
self.level1.append( |
|
ContextGuidedBlock( |
|
cur_channels if i == 0 else num_channels[1], |
|
num_channels[1], |
|
dilations[0], |
|
reductions[0], |
|
downsample=(i == 0), |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
with_cp=with_cp)) |
|
|
|
cur_channels = 2 * num_channels[1] + in_channels |
|
self.norm_prelu_1 = nn.Sequential( |
|
build_norm_layer(norm_cfg, cur_channels)[1], |
|
nn.PReLU(cur_channels)) |
|
|
|
|
|
self.level2 = nn.ModuleList() |
|
for i in range(num_blocks[1]): |
|
self.level2.append( |
|
ContextGuidedBlock( |
|
cur_channels if i == 0 else num_channels[2], |
|
num_channels[2], |
|
dilations[1], |
|
reductions[1], |
|
downsample=(i == 0), |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg, |
|
with_cp=with_cp)) |
|
|
|
cur_channels = 2 * num_channels[2] |
|
self.norm_prelu_2 = nn.Sequential( |
|
build_norm_layer(norm_cfg, cur_channels)[1], |
|
nn.PReLU(cur_channels)) |
|
|
|
def forward(self, x): |
|
output = [] |
|
|
|
|
|
inp_2x = self.inject_2x(x) |
|
inp_4x = self.inject_4x(x) |
|
for layer in self.stem: |
|
x = layer(x) |
|
x = self.norm_prelu_0(torch.cat([x, inp_2x], 1)) |
|
output.append(x) |
|
|
|
|
|
for i, layer in enumerate(self.level1): |
|
x = layer(x) |
|
if i == 0: |
|
down1 = x |
|
x = self.norm_prelu_1(torch.cat([x, down1, inp_4x], 1)) |
|
output.append(x) |
|
|
|
|
|
for i, layer in enumerate(self.level2): |
|
x = layer(x) |
|
if i == 0: |
|
down2 = x |
|
x = self.norm_prelu_2(torch.cat([down2, x], 1)) |
|
output.append(x) |
|
|
|
return output |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
if isinstance(pretrained, str): |
|
logger = get_root_logger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
kaiming_init(m) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, 1) |
|
elif isinstance(m, nn.PReLU): |
|
constant_init(m, 0) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode whill keeping the normalization |
|
layer freezed.""" |
|
super(CGNet, self).train(mode) |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
|
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|