Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
raw
history blame
13.1 kB
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer,
constant_init, kaiming_init)
from mmcv.runner import load_checkpoint
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
class GlobalContextExtractor(nn.Module):
"""Global Context Extractor for CGNet.
This class is employed to refine the joFint feature of both local feature
and surrounding context.
Args:
channel (int): Number of input feature channels.
reduction (int): Reductions for global context extractor. Default: 16.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self, channel, reduction=16, with_cp=False):
super(GlobalContextExtractor, self).__init__()
self.channel = channel
self.reduction = reduction
assert reduction >= 1 and channel >= reduction
self.with_cp = with_cp
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel), nn.Sigmoid())
def forward(self, x):
def _inner_forward(x):
num_batch, num_channel = x.size()[:2]
y = self.avg_pool(x).view(num_batch, num_channel)
y = self.fc(y).view(num_batch, num_channel, 1, 1)
return x * y
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class ContextGuidedBlock(nn.Module):
"""Context Guided Block for CGNet.
This class consists of four components: local feature extractor,
surrounding feature extractor, joint feature extractor and global
context extractor.
Args:
in_channels (int): Number of input feature channels.
out_channels (int): Number of output feature channels.
dilation (int): Dilation rate for surrounding context extractor.
Default: 2.
reduction (int): Reduction for global context extractor. Default: 16.
skip_connect (bool): Add input to output or not. Default: True.
downsample (bool): Downsample the input to 1/2 or not. Default: False.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='PReLU').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
in_channels,
out_channels,
dilation=2,
reduction=16,
skip_connect=True,
downsample=False,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='PReLU'),
with_cp=False):
super(ContextGuidedBlock, self).__init__()
self.with_cp = with_cp
self.downsample = downsample
channels = out_channels if downsample else out_channels // 2
if 'type' in act_cfg and act_cfg['type'] == 'PReLU':
act_cfg['num_parameters'] = channels
kernel_size = 3 if downsample else 1
stride = 2 if downsample else 1
padding = (kernel_size - 1) // 2
self.conv1x1 = ConvModule(
in_channels,
channels,
kernel_size,
stride,
padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.f_loc = build_conv_layer(
conv_cfg,
channels,
channels,
kernel_size=3,
padding=1,
groups=channels,
bias=False)
self.f_sur = build_conv_layer(
conv_cfg,
channels,
channels,
kernel_size=3,
padding=dilation,
groups=channels,
dilation=dilation,
bias=False)
self.bn = build_norm_layer(norm_cfg, 2 * channels)[1]
self.activate = nn.PReLU(2 * channels)
if downsample:
self.bottleneck = build_conv_layer(
conv_cfg,
2 * channels,
out_channels,
kernel_size=1,
bias=False)
self.skip_connect = skip_connect and not downsample
self.f_glo = GlobalContextExtractor(out_channels, reduction, with_cp)
def forward(self, x):
def _inner_forward(x):
out = self.conv1x1(x)
loc = self.f_loc(out)
sur = self.f_sur(out)
joi_feat = torch.cat([loc, sur], 1) # the joint feature
joi_feat = self.bn(joi_feat)
joi_feat = self.activate(joi_feat)
if self.downsample:
joi_feat = self.bottleneck(joi_feat) # channel = out_channels
# f_glo is employed to refine the joint feature
out = self.f_glo(joi_feat)
if self.skip_connect:
return x + out
else:
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class InputInjection(nn.Module):
"""Downsampling module for CGNet."""
def __init__(self, num_downsampling):
super(InputInjection, self).__init__()
self.pool = nn.ModuleList()
for i in range(num_downsampling):
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1))
def forward(self, x):
for pool in self.pool:
x = pool(x)
return x
@BACKBONES.register_module()
class CGNet(nn.Module):
"""CGNet backbone.
A Light-weight Context Guided Network for Semantic Segmentation
arXiv: https://arxiv.org/abs/1811.08201
Args:
in_channels (int): Number of input image channels. Normally 3.
num_channels (tuple[int]): Numbers of feature channels at each stages.
Default: (32, 64, 128).
num_blocks (tuple[int]): Numbers of CG blocks at stage 1 and stage 2.
Default: (3, 21).
dilations (tuple[int]): Dilation rate for surrounding context
extractors at stage 1 and stage 2. Default: (2, 4).
reductions (tuple[int]): Reductions for global context extractors at
stage 1 and stage 2. Default: (8, 16).
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='PReLU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
in_channels=3,
num_channels=(32, 64, 128),
num_blocks=(3, 21),
dilations=(2, 4),
reductions=(8, 16),
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='PReLU'),
norm_eval=False,
with_cp=False):
super(CGNet, self).__init__()
self.in_channels = in_channels
self.num_channels = num_channels
assert isinstance(self.num_channels, tuple) and len(
self.num_channels) == 3
self.num_blocks = num_blocks
assert isinstance(self.num_blocks, tuple) and len(self.num_blocks) == 2
self.dilations = dilations
assert isinstance(self.dilations, tuple) and len(self.dilations) == 2
self.reductions = reductions
assert isinstance(self.reductions, tuple) and len(self.reductions) == 2
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
if 'type' in self.act_cfg and self.act_cfg['type'] == 'PReLU':
self.act_cfg['num_parameters'] = num_channels[0]
self.norm_eval = norm_eval
self.with_cp = with_cp
cur_channels = in_channels
self.stem = nn.ModuleList()
for i in range(3):
self.stem.append(
ConvModule(
cur_channels,
num_channels[0],
3,
2 if i == 0 else 1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
cur_channels = num_channels[0]
self.inject_2x = InputInjection(1) # down-sample for Input, factor=2
self.inject_4x = InputInjection(2) # down-sample for Input, factor=4
cur_channels += in_channels
self.norm_prelu_0 = nn.Sequential(
build_norm_layer(norm_cfg, cur_channels)[1],
nn.PReLU(cur_channels))
# stage 1
self.level1 = nn.ModuleList()
for i in range(num_blocks[0]):
self.level1.append(
ContextGuidedBlock(
cur_channels if i == 0 else num_channels[1],
num_channels[1],
dilations[0],
reductions[0],
downsample=(i == 0),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp)) # CG block
cur_channels = 2 * num_channels[1] + in_channels
self.norm_prelu_1 = nn.Sequential(
build_norm_layer(norm_cfg, cur_channels)[1],
nn.PReLU(cur_channels))
# stage 2
self.level2 = nn.ModuleList()
for i in range(num_blocks[1]):
self.level2.append(
ContextGuidedBlock(
cur_channels if i == 0 else num_channels[2],
num_channels[2],
dilations[1],
reductions[1],
downsample=(i == 0),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp)) # CG block
cur_channels = 2 * num_channels[2]
self.norm_prelu_2 = nn.Sequential(
build_norm_layer(norm_cfg, cur_channels)[1],
nn.PReLU(cur_channels))
def forward(self, x):
output = []
# stage 0
inp_2x = self.inject_2x(x)
inp_4x = self.inject_4x(x)
for layer in self.stem:
x = layer(x)
x = self.norm_prelu_0(torch.cat([x, inp_2x], 1))
output.append(x)
# stage 1
for i, layer in enumerate(self.level1):
x = layer(x)
if i == 0:
down1 = x
x = self.norm_prelu_1(torch.cat([x, down1, inp_4x], 1))
output.append(x)
# stage 2
for i, layer in enumerate(self.level2):
x = layer(x)
if i == 0:
down2 = x
x = self.norm_prelu_2(torch.cat([down2, x], 1))
output.append(x)
return output
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Linear)):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
elif isinstance(m, nn.PReLU):
constant_init(m, 0)
else:
raise TypeError('pretrained must be a str or None')
def train(self, mode=True):
"""Convert the model into training mode whill keeping the normalization
layer freezed."""
super(CGNet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()