Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
raw
history blame
6.03 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import math
import logging
import warnings
import errno
import os
import sys
import re
import zipfile
from urllib.parse import urlparse # noqa: F401
HASH_REGEX = re.compile(r'-([a-f0-9]*)\.')
_logger = logging.getLogger(__name__)
def load_state_dict_from_url(url, model_dir=None, file_name=None, check_hash=False, progress=True, map_location=None):
# Issue warning to move data if old env is set
if os.getenv('TORCH_MODEL_ZOO'):
warnings.warn('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')
if model_dir is None:
hub_dir = torch.hub.get_dir()
model_dir = os.path.join(hub_dir, 'checkpoints')
try:
os.makedirs(model_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# Directory already exists, ignore.
pass
else:
# Unexpected OSError, re-raise.
raise
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = HASH_REGEX.search(filename).group(1) if check_hash else None
torch.hub.download_url_to_file(url, cached_file, hash_prefix, progress=progress)
if zipfile.is_zipfile(cached_file):
state_dict = torch.load(cached_file, map_location=map_location)['model']
else:
state_dict = torch.load(cached_file, map_location=map_location)
return state_dict
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True, pos_embed_interp=False, num_patches=576, align_corners=False):
if cfg is None:
cfg = getattr(model, 'default_cfg')
if cfg is None or 'url' not in cfg or not cfg['url']:
_logger.warning("Pretrained model URL is invalid, using random initialization.")
return
if 'pretrained_finetune' in cfg and cfg['pretrained_finetune']:
state_dict = torch.load(cfg['pretrained_finetune'])
print('load pre-trained weight from ' + cfg['pretrained_finetune'])
else:
state_dict = load_state_dict_from_url(cfg['url'], progress=False, map_location='cpu')
print('load pre-trained weight from imagenet21k')
if filter_fn is not None:
state_dict = filter_fn(state_dict)
if in_chans == 1:
conv1_name = cfg['first_conv']
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name)
conv1_weight = state_dict[conv1_name + '.weight']
# Some weights are in torch.half, ensure it's float for sum on CPU
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I > 3:
assert conv1_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
else:
conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
elif in_chans != 3:
conv1_name = cfg['first_conv']
conv1_weight = state_dict[conv1_name + '.weight']
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I == 3:
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name)
del state_dict[conv1_name + '.weight']
strict = False
else:
# NOTE this strategy should be better than random init, but there could be other combinations of
# the original RGB input layer weights that'd work better for specific cases.
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name)
repeat = int(math.ceil(in_chans / 3))
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv1_weight *= (3 / float(in_chans))
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
classifier_name = cfg['classifier']
if num_classes == 1000 and cfg['num_classes'] == 1001:
# special case for imagenet trained models with extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[1:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[1:]
elif num_classes != cfg['num_classes']:
# completely discard fully connected for all other differences between pretrained and created model
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
if pos_embed_interp:
n, c, hw = state_dict['pos_embed'].transpose(1, 2).shape
h = w = int(math.sqrt(hw))
pos_embed_weight = state_dict['pos_embed'][:, (-h * w):]
pos_embed_weight = pos_embed_weight.transpose(1,2)
n, c, hw = pos_embed_weight.shape
h = w = int(math.sqrt(hw))
pos_embed_weight = pos_embed_weight.view(n,c,h,w)
pos_embed_weight = F.interpolate(pos_embed_weight, size=int(math.sqrt(num_patches)), mode='bilinear', align_corners=align_corners)
pos_embed_weight = pos_embed_weight.view(n,c,-1).transpose(1,2)
cls_token_weight = state_dict['pos_embed'][:,0].unsqueeze(1)
state_dict['pos_embed'] = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
model.load_state_dict(state_dict, strict=strict)