|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
import math |
|
|
|
from .helpers import load_pretrained |
|
from .layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from ..builder import HEADS |
|
from .decode_head import BaseDecodeHead |
|
from ..backbones.vit import Block |
|
|
|
from mmcv.cnn import build_norm_layer |
|
|
|
|
|
@HEADS.register_module() |
|
class VIT_MLA_AUXIHead(BaseDecodeHead): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=768, **kwargs): |
|
super(VIT_MLA_AUXIHead, self).__init__(**kwargs) |
|
self.img_size = img_size |
|
if self.in_channels==1024: |
|
self.aux_0 = nn.Conv2d(self.in_channels, 256, kernel_size=1, bias=False) |
|
self.aux_1 = nn.Conv2d(256, self.num_classes, kernel_size=1, bias=False) |
|
elif self.in_channels==256: |
|
self.aux = nn.Conv2d(self.in_channels, self.num_classes, kernel_size=1, bias=False) |
|
|
|
def to_2D(self, x): |
|
n, hw, c = x.shape |
|
h=w = int(math.sqrt(hw)) |
|
x = x.transpose(1,2).reshape(n, c, h, w) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self._transform_inputs(x) |
|
if x.dim()==3: |
|
x = x[:,1:] |
|
x = self.to_2D(x) |
|
|
|
if self.in_channels==1024: |
|
x = self.aux_0(x) |
|
x = self.aux_1(x) |
|
elif self.in_channels==256: |
|
x = self.aux(x) |
|
x = F.interpolate(x, size=self.img_size, mode='bilinear', align_corners=self.align_corners) |
|
return x |
|
|