import nltk from nltk.tokenize import word_tokenize import re # Load the document with open('document.txt', 'r') as f: text = f.read() # Preprocess the text tokens = word_tokenize(text.lower()) tokens = [t for t in tokens if t.isalpha()] # remove non-alpha characters # Define key words key_words = ['chronic kidney disease', 'heart failure', 'cirrhosis', 'ascites', 'ESRD', 'liver disease'] # Use regex to find key words found_key_words = [] for key_word in key_words: pattern = re.compile(r'\b' + key_word + r'\b') if pattern.search(text): found_key_words.append(key_word) # Return the list of key words print(found_key_words)