Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,29 @@
|
|
1 |
-
Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained [IndoBERT Base Model (phase1 - uncased)](https://huggingface.co/indobenchmark/indobert-base-p1) model using [Prosa sentiment dataset](https://github.com/indobenchmark/indonlu/tree/master/dataset/smsa_doc-sentiment-prosa)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained [IndoBERT Base Model (phase1 - uncased)](https://huggingface.co/indobenchmark/indobert-base-p1) model using [Prosa sentiment dataset](https://github.com/indobenchmark/indonlu/tree/master/dataset/smsa_doc-sentiment-prosa)
|
2 |
+
|
3 |
+
## How to Use
|
4 |
+
### As Text Classifier
|
5 |
+
```python
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
|
9 |
+
pretrained_name = "mdhugol/indonesia-bert-sentiment-classification"
|
10 |
+
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(pretrained)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained)
|
13 |
+
|
14 |
+
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
15 |
+
|
16 |
+
label_index = {'LABEL_0': 'positive', 'LABEL_1': 'neutral', 'LABEL_2': 'negative'}
|
17 |
+
|
18 |
+
pos_text = "Sangat bahagia hari ini"
|
19 |
+
neg_text = "Dasar anak sialan!! Kurang ajar!!"
|
20 |
+
|
21 |
+
result = sentiment_analysis(pos_text)
|
22 |
+
status = label_index[result[0]['label']]
|
23 |
+
score = result[0]['score']
|
24 |
+
print(f'Text: {pos_text} | Label : {status} ({score * 100:.3f}%)')
|
25 |
+
|
26 |
+
result = sentiment_analysis(neg_text)
|
27 |
+
status = label_index[result[0]['label']]
|
28 |
+
score = result[0]['score']
|
29 |
+
print(f'Text: {neg_text} | Label : {status} ({score * 100:.3f}%)')
|