Upload finetune.py
Browse files- finetune.py +136 -0
finetune.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainingArguments, Seq2SeqTrainer
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
device = 'mps:0'
|
12 |
+
# Load the dataset and filter for Latin entries
|
13 |
+
dataset = load_dataset("CATMuS/medieval", split='train')
|
14 |
+
# latin_dataset = dataset.filter(lambda example: example['language'] == 'Latin')
|
15 |
+
latin_dataset = dataset.filter(lambda example: example['language'] == 'Latin' and example['script_type'] == 'Caroline')
|
16 |
+
|
17 |
+
print(latin_dataset)
|
18 |
+
# Convert to pandas DataFrame for easier manipulation
|
19 |
+
df = pd.DataFrame(latin_dataset)
|
20 |
+
|
21 |
+
# Split the data into training and testing sets
|
22 |
+
train_df, test_df = train_test_split(df, test_size=0.2)
|
23 |
+
train_df.reset_index(drop=True, inplace=True)
|
24 |
+
test_df.reset_index(drop=True, inplace=True)
|
25 |
+
|
26 |
+
# Define the dataset class
|
27 |
+
class HandwrittenTextDataset(Dataset):
|
28 |
+
def __init__(self, df, processor, max_target_length=128):
|
29 |
+
self.df = df
|
30 |
+
self.processor = processor
|
31 |
+
self.max_target_length = max_target_length
|
32 |
+
|
33 |
+
def __len__(self):
|
34 |
+
return len(self.df)
|
35 |
+
|
36 |
+
def __getitem__(self, idx):
|
37 |
+
image_data = self.df['im'][idx]
|
38 |
+
text = self.df['text'][idx]
|
39 |
+
|
40 |
+
# Convert array to PIL image
|
41 |
+
image = Image.fromarray(np.array(image_data)).convert("RGB")
|
42 |
+
|
43 |
+
# Prepare image (i.e., resize + normalize)
|
44 |
+
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
|
45 |
+
|
46 |
+
# Add labels (input_ids) by encoding the text
|
47 |
+
labels = self.processor.tokenizer(text,
|
48 |
+
padding="max_length",
|
49 |
+
max_length=self.max_target_length,
|
50 |
+
truncation=True).input_ids
|
51 |
+
# Important: make sure that PAD tokens are ignored by the loss function
|
52 |
+
labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]
|
53 |
+
|
54 |
+
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
|
55 |
+
return encoding
|
56 |
+
# Instantiate processor and dataset
|
57 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
58 |
+
train_dataset = HandwrittenTextDataset(df=train_df, processor=processor)
|
59 |
+
eval_dataset = HandwrittenTextDataset(df=test_df, processor=processor)
|
60 |
+
|
61 |
+
# Create corresponding dataloaders
|
62 |
+
train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True)
|
63 |
+
eval_dataloader = DataLoader(eval_dataset, batch_size=4)
|
64 |
+
|
65 |
+
# Load the model
|
66 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
67 |
+
|
68 |
+
# Set special tokens used for creating the decoder_input_ids from the labels
|
69 |
+
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
70 |
+
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
71 |
+
|
72 |
+
# Make sure vocab size is set correctly
|
73 |
+
model.config.vocab_size = model.config.decoder.vocab_size
|
74 |
+
|
75 |
+
# Set beam search parameters
|
76 |
+
model.config.eos_token_id = processor.tokenizer.sep_token_id
|
77 |
+
model.config.max_length = 64
|
78 |
+
model.config.early_stopping = True
|
79 |
+
model.config.no_repeat_ngram_size = 3
|
80 |
+
model.config.length_penalty = 2.0
|
81 |
+
model.config.num_beams = 4
|
82 |
+
|
83 |
+
# Training arguments
|
84 |
+
training_args = Seq2SeqTrainingArguments(
|
85 |
+
output_dir="./results",
|
86 |
+
per_device_train_batch_size=4,
|
87 |
+
num_train_epochs=10,
|
88 |
+
logging_steps=1000,
|
89 |
+
save_steps=1000,
|
90 |
+
evaluation_strategy="steps",
|
91 |
+
save_total_limit=2,
|
92 |
+
predict_with_generate=True,
|
93 |
+
fp16=False, # Set to True if using a compatible GPU
|
94 |
+
)
|
95 |
+
|
96 |
+
# Trainer
|
97 |
+
trainer = Seq2SeqTrainer(
|
98 |
+
model=model,
|
99 |
+
args=training_args,
|
100 |
+
train_dataset=train_dataset,
|
101 |
+
eval_dataset=eval_dataset,
|
102 |
+
)
|
103 |
+
|
104 |
+
# Train the model
|
105 |
+
trainer.train()
|
106 |
+
|
107 |
+
# After training, save both the model and the processor
|
108 |
+
model.save_pretrained("./finetuned_model")
|
109 |
+
processor.save_pretrained("./finetuned_model")
|
110 |
+
|
111 |
+
from datasets import load_metric
|
112 |
+
|
113 |
+
cer_metric = load_metric("cer")
|
114 |
+
|
115 |
+
def compute_cer(pred_ids, label_ids):
|
116 |
+
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
117 |
+
label_ids[label_ids == -100] = processor.tokenizer.pad_token_id
|
118 |
+
label_str = processor.batch_decode(label_ids, skip_special_tokens=True)
|
119 |
+
|
120 |
+
cer = cer_metric.compute(predictions=pred_str, references=label_str)
|
121 |
+
|
122 |
+
return cer
|
123 |
+
|
124 |
+
# Evaluation
|
125 |
+
model.eval()
|
126 |
+
valid_cer = 0.0
|
127 |
+
with torch.no_grad():
|
128 |
+
for batch in eval_dataloader:
|
129 |
+
# Run batch generation
|
130 |
+
outputs = model.generate(batch["pixel_values"].to(device))
|
131 |
+
# Compute metrics
|
132 |
+
cer = compute_cer(pred_ids=outputs, label_ids=batch["labels"])
|
133 |
+
valid_cer += cer
|
134 |
+
|
135 |
+
print("Validation CER:", valid_cer / len(eval_dataloader))
|
136 |
+
|