wjbmattingly commited on
Commit
8b47f0c
·
verified ·
1 Parent(s): 2c99d2d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - la
5
+ - fr
6
+ - esp
7
+ datasets:
8
+ - CATMuS/medieval
9
+ tags:
10
+ - trocr
11
+ - image-to-text
12
+ widget:
13
+ - src: >-
14
+ https://huggingface.co/medieval-data/trocr-medieval-print/resolve/main/images/print-1.png
15
+ example_title: Print 1
16
+ - src: >-
17
+ https://huggingface.co/medieval-data/trocr-medieval-print/resolve/main/images/print-2.png
18
+ example_title: Print 2
19
+ - src: >-
20
+ https://huggingface.co/medieval-data/trocr-medieval-print/resolve/main/images/print-3.png
21
+ example_title: Print 3
22
+ metrics:
23
+ - cer: 0.05
24
+ ---
25
+
26
+ ![logo](logo-print.png)
27
+
28
+ # About
29
+
30
+ CER: 0.05
31
+
32
+ This is a TrOCR model for medieval Print. The base model was [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten). The model was then finetuned to Caroline: [medieval-data/trocr-medieval-latin-caroline](https://huggingface.co/medieval-data/trocr-medieval-latin-caroline). From a saved checkpoint, the model was further finetuned to Print.
33
+
34
+ The dataset used for training was [CATMuS](https://huggingface.co/datasets/CATMuS/medieval).
35
+
36
+ The model has not been formally tested. Preliminary examination indicates that further finetuning is needed.
37
+
38
+ Finetuning was done with finetune.py found in this repository.
39
+
40
+ # Usage
41
+
42
+ ```python
43
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
44
+ from PIL import Image
45
+ import requests
46
+
47
+ # load image from the IAM database
48
+ url = 'https://huggingface.co/medieval-data/trocr-medieval-print/resolve/main/images/print-1.png'
49
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
50
+
51
+ processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-print')
52
+ model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-print')
53
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values
54
+
55
+ generated_ids = model.generate(pixel_values)
56
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
57
+ ```
58
+
59
+ # BibTeX entry and citation info
60
+
61
+ ## TrOCR Paper
62
+
63
+ ```tex
64
+ @misc{li2021trocr,
65
+ title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
66
+ author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
67
+ year={2021},
68
+ eprint={2109.10282},
69
+ archivePrefix={arXiv},
70
+ primaryClass={cs.CL}
71
+ }
72
+ ```
73
+
74
+ ## CATMuS Paper
75
+
76
+ ```tex
77
+ @unpublished{clerice:hal-04453952,
78
+ TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
79
+ AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
80
+ URL = {https://inria.hal.science/hal-04453952},
81
+ NOTE = {working paper or preprint},
82
+ YEAR = {2024},
83
+ MONTH = Feb,
84
+ KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
85
+ PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
86
+ HAL_ID = {hal-04453952},
87
+ HAL_VERSION = {v1},
88
+ }
89
+ ```