wjbmattingly commited on
Commit
cc83866
1 Parent(s): 110a8e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,3 +1,83 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - es
5
+ datasets:
6
+ - CATMuS/medieval
7
+ tags:
8
+ - trocr
9
+ - image-to-text
10
+ widget:
11
+ - src: >-
12
+ https://huggingface.co/medieval-data/trocr-medieval-textualis/resolve/main/images/textualis-1.png
13
+ example_title: Hybrida 1
14
+ - src: >-
15
+ https://huggingface.co/medieval-data/trocr-medieval-textualis/resolve/main/images/textualis-2.png
16
+ example_title: Hybrida 2
17
+ - src: >-
18
+ https://huggingface.co/medieval-data/trocr-medieval-textualis/resolve/main/images/textualis-3.png
19
+ example_title: Hybrida 3
20
+ ---
21
+
22
+ ![logo](logo-hybrida.png)
23
+
24
+ # About
25
+
26
+ This is a TrOCR model for medieval Castilian, specifically the Hybrida script. The base model was [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten). The model was then finetuned to Caroline: [medieval-data/trocr-medieval-latin-caroline](https://huggingface.co/medieval-data/trocr-medieval-latin-caroline). From a saved checkpoint, the model was further finetuned to Textualis.
27
+
28
+ The dataset used for training was [CATMuS](https://huggingface.co/datasets/CATMuS/medieval).
29
+
30
+ The model has not been formally tested. Preliminary examination indicates that further finetuning is needed.
31
+
32
+ Finetuning was done with finetune.py found in this repository.
33
+
34
+ # Usage
35
+
36
+ ```python
37
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
38
+ from PIL import Image
39
+ import requests
40
+
41
+ # load image from the IAM database
42
+ url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg'
43
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
44
+
45
+ processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-castilian-hybrida')
46
+ model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-castilian-hybrida')
47
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values
48
+
49
+ generated_ids = model.generate(pixel_values)
50
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
51
+ ```
52
+
53
+ # BibTeX entry and citation info
54
+
55
+ ## TrOCR Paper
56
+
57
+ ```tex
58
+ @misc{li2021trocr,
59
+ title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
60
+ author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
61
+ year={2021},
62
+ eprint={2109.10282},
63
+ archivePrefix={arXiv},
64
+ primaryClass={cs.CL}
65
+ }
66
+ ```
67
+
68
+ ## CATMuS Paper
69
+
70
+ ```tex
71
+ @unpublished{clerice:hal-04453952,
72
+ TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
73
+ AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
74
+ URL = {https://inria.hal.science/hal-04453952},
75
+ NOTE = {working paper or preprint},
76
+ YEAR = {2024},
77
+ MONTH = Feb,
78
+ KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
79
+ PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
80
+ HAL_ID = {hal-04453952},
81
+ HAL_VERSION = {v1},
82
+ }
83
+ ```