metadata
language:
- en
license: llama3.2
library_name: transformers
base_model:
- meta-llama/Llama-3.2-1B-Instruct
- Llama-3.2-SUN-2.5B-chat
datasets:
- argilla/OpenHermesPreferences
- argilla/magpie-ultra-v0.1
- argilla/Capybara-Preferences-Filtered
- mlabonne/open-perfectblend
- HuggingFaceTB/everyday-conversations-llama3.1-2k
- WizardLMTeam/WizardLM_evol_instruct_V2_196k
- ProlificAI/social-reasoning-rlhf
- allenai/tulu-3-sft-mixture
- allenai/llama-3.1-tulu-3-8b-preference-mixture
pipeline_tag: text-generation
model-index:
- name: Llama-3.2-SUN-1B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.13
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 9.18
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 4.61
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.05
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.68
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
MedIT SUN 1B Instruct
Base Model
- Llama 3.2 1B -> MedIT SUN 2.5B -> MedIT SUN 1B -> Knowledge Injection from Llama 3.1 8B Instruct
Mesh Size
- 1B to 2.5B parameters MedIT SUN 2.5B -> layers mesh using MedIT-mesh technique and downscaled to 1B
Extension Method
- Proprietary technique developed by MedIT Solutions
Fine-tuning
- Open (or open subsets allowing for commercial use) open datasets from HF
- Open (or open subsets allowing for commercial use) SFT datasets from HF
Training Status
- Current version: instruct-1.0.0
Key Features
- Built on Llama 3.2 architecture
- Upscaled from 1B to 2.47B parameters
- Optimized for open-ended conversations
- Incorporates supervised fine-tuning for improved performance
- Layers meshing using the MedIT-mesh technique
- Downscaled to 1B
- Knowledge injection from Llama 3.1 8B Instruct using new technique developed by MedIT Solutions
Use Case
- General conversation and task-oriented interactions
Limitations As the model is still in training, performance and capabilities may vary. Users should be aware that the model is not in its final form and may exhibit inconsistencies or limitations typical of in-progress AI models.
Disclaimer and Safety Considerations The Model is designed to be used as a smart assistant but not as a knowledge source within your applications, systems, or environments. It is not intended to provide 100% accurate answers, especially in scenarios where high precision and accuracy are
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 15.11 |
IFEval (0-Shot) | 64.13 |
BBH (3-Shot) | 9.18 |
MATH Lvl 5 (4-Shot) | 4.61 |
GPQA (0-shot) | 0.00 |
MuSR (0-shot) | 4.05 |
MMLU-PRO (5-shot) | 8.68 |