joheras commited on
Commit
e560911
·
verified ·
1 Parent(s): 5301f22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +277 -164
README.md CHANGED
@@ -1,199 +1,312 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - es
5
+ base_model:
6
+ - microsoft/mdeberta-v3-base
7
+ license: cc-by-nc-4.0
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
  ---
14
 
15
+ # Model Card for mdeberta-v3-base-re-ct
16
 
17
+ This relation extraction model extracts intervention-associated relationships, temporal relations, negation/speculation and others relevant
18
+ for clinical trials.
19
 
20
+ The model achieves the following results on the test set (when trained with the training and development set; results are averaged over 5 evaluation rounds):
21
+ - Precision: 0.886 (±0.003)
22
+ - Recall: 0.857 (±0.007)
23
+ - F1: 0.869 (±0.005)
24
+ - Accuracy: 0.911 (±0.003)
25
 
26
 
27
+ ## Model description
28
 
29
+ This model adapts the pre-trained model [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base).
30
+ It is fine-tuned to conduct relation extraction on Spanish texts about clinical trials.
31
+ The model is fine-tuned on the [Clinical Trials for Evidence-Based-Medicine in Spanish corpus](http://www.lllf.uam.es/ESP/nlpdata/wp2/).
32
 
33
+ If you use this model, please, cite as follows:
34
 
35
+ ```
36
+ @article{campillosetal2025,
37
+         title = {{Benchmarking Transformer Models for Relation Extraction and Concept Normalization in a Clinical Trials Corpus}},
38
+         author = {Campillos-Llanos, Leonardo and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n, Adri{\'a}n and Zakhir-Puig, Sof{\'i}a and Heras-Vicente, J{\'o}nathan},
39
+         journal = {(Under review)},
40
+ year={2025}
41
+ }
42
+ ```
43
 
44
+ ## Intended uses & limitations
 
 
 
 
 
 
45
 
46
+ **Disclosure**: *This model is under development and needs to be improved. It should not be used for medical decision making without human assistance and supervision*
47
 
48
+ This model is intended for a generalist purpose, and may have bias and/or any other undesirable distortions.
49
 
50
+ Third parties who deploy or provide systems and/or services using any of these models (or using systems based on these models) should note that it is their responsibility to mitigate the risks arising from their use. Third parties, in any event, need to comply with applicable regulations, including regulations concerning the use of artificial intelligence.
 
 
51
 
52
+ The owner or creator of the models will in no event be liable for any results arising from the use made by third parties of these models.
53
 
54
+ **Descargo de responsabilidad**: *Esta herramienta se encuentra en desarrollo y no debe ser empleada para la toma de decisiones médicas*
55
 
56
+ La finalidad de este modelo es generalista, y se advierte que puede tener sesgos y/u otro tipo de distorsiones indeseables.
57
 
58
+ Terceras partes que desplieguen o proporcionen sistemas y/o servicios usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) han tener presente que es su responsabilidad abordar y minimizar los riesgos derivados de su uso. Las terceras partes, en cualquier circunstancia, deben cumplir con la normativa aplicable, incluyendo la normativa que concierne al uso de la inteligencia artificial.
59
 
60
+ El propietario o creador de los modelos de ningún modo será responsable de los resultados derivados del uso que las terceras partes hagan de estos modelos.
61
 
 
62
 
63
+ ## Training and evaluation data
64
 
65
+ The data used for fine-tuning are the [Clinical Trials for Evidence-Based-Medicine in Spanish corpus](http://www.lllf.uam.es/ESP/nlpdata/wp2/) version 3 (annotated with semantic relationships).
66
+ It is a collection of 1200 texts about clinical trials studies and clinical trials announcements:
67
+ - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO)
68
+ - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos
69
 
70
+ The CT-EBM-ES resource (version 1) can be cited as follows:
71
 
72
+ ```
73
+ @article{campillosetal-midm2021,
74
+         title = {A clinical trials corpus annotated with UMLS© entities to enhance the access to Evidence-Based Medicine},
75
+         author = {Campillos-Llanos, Leonardo and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n, Adri{\'a}n and Moreno-Sandoval, Antonio},
76
+         journal = {BMC Medical Informatics and Decision Making},
77
+         volume={21},
78
+ number={1},
79
+ pages={1--19},
80
+ year={2021},
81
+ publisher={BioMed Central}
82
+ }
83
+ ```
84
 
 
85
 
 
86
 
87
+ ## Training procedure
88
 
89
+ ### Training hyperparameters
90
 
91
+ The following hyperparameters were used during training:
92
+ - learning_rate: 5e-05
93
+ - train_batch_size: 16
94
+ - eval_batch_size: 16
95
+ - seed: we used different seeds for 5 evaluation rounds, and uploaded the model with the best results
96
+ - optimizer: AdamW
97
+ - weight decay: 1e-2
98
+ - lr_scheduler_type: linear
99
+ - num_epochs: 5 epochs.
100
 
 
101
 
102
+ ### Training results (test set; average and standard deviation of 5 rounds with different seeds)
103
 
104
+ | Precision | Recall | F1 | Accuracy |
105
+ |:--------------:|:--------------:|:--------------:|:--------------:|
106
+ | 0.886 (±0.003) | 0.857 (±0.007) | 0.869 (±0.005) | 0.911 (±0.003) |
107
 
 
108
 
109
+ **Results per class (test set; best model)**
110
+
111
+ | Class | Precision | Recall | F1 | Support |
112
+ |:---------------:|:--------------:|:--------------:|:--------------:|:---------:|
113
+ | Experiences | 0.96 | 0.97 | 0.97 | 2003 |
114
+ | Has_Age | 0.93 | 0.84 | 0.88 | 152 |
115
+ | Has_Dose_or_Strength | 0.84 | 0.81 | 0.83 | 189 |
116
+ | Has_Drug_Form | 0.90 | 0.73 | 0.81 | 64 |
117
+ | Has_Duration_or_Interval | 0.83 | 0.84 | 0.84 | 365 |
118
+ | Has_Frequency | 0.79 | 0.86 | 0.82 | 84 |
119
+ | Has_Quantifier_or_Qualifier | 0.91 | 0.89 | 0.90 | 1040 |
120
+ | Has_Result_or_Value | 0.92 | 0.87 | 0.89 | 384 |
121
+ | Has_Route_or_Mode | 0.91 | 0.87 | 0.89 | 221 |
122
+ | Has_Time_Data | 0.83 | 0.91 | 0.86 | 589 |
123
+ | Location_of | 0.96 | 0.96 | 0.96 | 1119 |
124
+ | Used_for | 0.89 | 0.88 | 0.89 | 731 |
125
+
126
+ ### Usage
127
+
128
+
129
+ To use this model you need to install the datasets library.
130
+
131
+ ```shell
132
+ pip install datasets
133
+ ```
134
+
135
+ Then you can define the necessary functions and classes to load the model.
136
+
137
+ ```python
138
+ from transformers import (
139
+ DebertaV2Model, PreTrainedModel,
140
+ DataCollatorWithPadding,AutoTokenizer
141
+ )
142
+ from transformers.modeling_outputs import SequenceClassifierOutput
143
+ import torch
144
+ import torch.nn as nn
145
+ from datasets import Dataset
146
+ from torch.utils.data import DataLoader
147
+
148
+
149
+ class DebertaV2ForRelationExtraction(PreTrainedModel):
150
+ def __init__(self, config, num_labels):
151
+ super(DebertaV2ForRelationExtraction, self).__init__(config)
152
+ self.num_labels = num_labels
153
+ # body
154
+ self.deberta = DebertaV2Model(config)
155
+ # head
156
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
157
+ self.layer_norm = nn.LayerNorm(config.hidden_size * 2)
158
+ self.linear = nn.Linear(config.hidden_size * 2, self.num_labels)
159
+ self.init_weights()
160
+
161
+ def forward(self, input_ids, token_type_ids, attention_mask,
162
+ span_idxs, labels=None):
163
+ outputs = (
164
+ self.deberta(input_ids, token_type_ids=token_type_ids,
165
+ attention_mask=attention_mask,
166
+ output_hidden_states=False)
167
+ .last_hidden_state)
168
+
169
+ sub_maxpool, obj_maxpool = [], []
170
+ for bid in range(outputs.size(0)):
171
+ # span includes entity markers, maxpool across span
172
+ sub_span = torch.max(outputs[bid, span_idxs[bid, 0]:span_idxs[bid, 1]+1, :],
173
+ dim=0, keepdim=True).values
174
+ obj_span = torch.max(outputs[bid, span_idxs[bid, 2]:span_idxs[bid, 3]+1, :],
175
+ dim=0, keepdim=True).values
176
+ sub_maxpool.append(sub_span)
177
+ obj_maxpool.append(obj_span)
178
+
179
+ sub_emb = torch.cat(sub_maxpool, dim=0)
180
+ obj_emb = torch.cat(obj_maxpool, dim=0)
181
+ rel_input = torch.cat((sub_emb, obj_emb), dim=-1)
182
+
183
+ rel_input = self.layer_norm(rel_input)
184
+ rel_input = self.dropout(rel_input)
185
+ logits = self.linear(rel_input)
186
+
187
+ if labels is not None:
188
+ loss_fn = nn.CrossEntropyLoss()
189
+ loss = loss_fn(logits.view(-1, self.num_labels), labels.view(-1))
190
+ return SequenceClassifierOutput(loss, logits)
191
+ else:
192
+ return SequenceClassifierOutput(None, logits)
193
+
194
+ id2label = {0: 'Experiences',
195
+ 1: 'Has_Age',
196
+ 2: 'Has_Dose_or_Strength',
197
+ 3: 'Has_Duration_or_Interval',
198
+ 4: 'Has_Frequency',
199
+ 5: 'Has_Route_or_Mode',
200
+ 6: 'Location_of',
201
+ 7: 'Used_for'}
202
+
203
+ def encode_data_inference(token_list,tokenizer):
204
+ tokenized_inputs = tokenizer(token_list,
205
+ is_split_into_words=True,
206
+ truncation=True)
207
+ span_idxs = []
208
+ for input_id in tokenized_inputs.input_ids:
209
+ tokens = tokenizer.convert_ids_to_tokens(input_id)
210
+ span_idxs.append([
211
+ [idx for idx, token in enumerate(tokens) if token.startswith("<S:")][0],
212
+ [idx for idx, token in enumerate(tokens) if token.startswith("</S:")][0],
213
+ [idx for idx, token in enumerate(tokens) if token.startswith("<O:")][0],
214
+ [idx for idx, token in enumerate(tokens) if token.startswith("</O:")][0]
215
+ ])
216
+ tokenized_inputs["span_idxs"] = span_idxs
217
+ # tokenized_inputs["labels"] = [label2id[label] for label in examples["label"]]
218
+ return tokenized_inputs
219
+
220
+ def predict_example(example,model,tokenizer):
221
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
222
+ model.to(device)
223
+ collate_fn = DataCollatorWithPadding(tokenizer, padding="longest", return_tensors="pt")
224
+
225
+
226
+ encoded_data = encode_data_inference(example,tokenizer)
227
+
228
+ inferenceds = Dataset.from_dict(encoded_data)
229
+
230
+ inference_dl = DataLoader(inferenceds,
231
+ shuffle=False,
232
+ # sampler=SubsetRandomSampler(np.random.randint(0, encoded_nyt_dataset["test"].num_rows, 100).tolist()),
233
+ batch_size=1,
234
+ collate_fn=collate_fn)
235
+ for batch in inference_dl:
236
+ batch = {k: v.to(device) for k, v in batch.items()}
237
+ with torch.no_grad():
238
+ outputs = model(**batch)
239
+ predictions = torch.argmax(outputs.logits, dim=-1).cpu().numpy()
240
+ return [id2label[p] for p in predictions]
241
+
242
+ ```
243
+
244
+ Finally, you can use it to make predictions:
245
+
246
+ ```python
247
+ example = [['Título',
248
+ 'público:',
249
+ 'Estudio',
250
+ 'multicéntrico,',
251
+ 'aleatorizado,',
252
+ 'doble',
253
+ 'ciego,',
254
+ 'controlado',
255
+ 'con',
256
+ 'placebo',
257
+ 'del',
258
+ 'anticuerpo',
259
+ 'monoclonal',
260
+ 'humano',
261
+ 'anti-TNF',
262
+ 'Adalimumab',
263
+ 'en',
264
+ '<S:LIV>',
265
+ 'sujetos',
266
+ 'pediátricos',
267
+ '</S:LIV>',
268
+ 'con',
269
+ 'colitis',
270
+ 'ulcerosa',
271
+ 'moderada',
272
+ 'o',
273
+ 'grav<O:CHE>',
274
+ 'Adalimumab',
275
+ '</O:CHE>blico:',
276
+ 'Estudio',
277
+ 'multicéntrico,',
278
+ 'aleatorizado,',
279
+ 'doble',
280
+ 'ciego,',
281
+ 'controlado',
282
+ 'con',
283
+ 'placebo',
284
+ 'del',
285
+ 'anticuerpo',
286
+ 'monoclonal',
287
+ 'humano',
288
+ 'anti-TNF',
289
+ 'Adalimumab',
290
+ 'en',
291
+ 'sujetos',
292
+ 'pediátricos',
293
+ 'con',
294
+ 'colitis',
295
+ 'ulcerosa',
296
+ 'moderada',
297
+ 'o',
298
+ 'grave']]
299
+
300
+ model = DebertaV2ForRelationExtraction.from_pretrained("medspaner/mdeberta-v3-base-re-ct-v2",8)
301
+ tokenizer = AutoTokenizer.from_pretrained("medspaner/mdeberta-v3-base-re-ct-v2")
302
+ predict_example(example,model,tokenizer)
303
+ ```
304
+
305
+
306
+
307
+ ### Framework versions
308
+
309
+ - Transformers 4.42.4
310
+ - Pytorch 2.0.1+cu117
311
+ - Datasets 2.15.0
312
+ - Tokenizers 0.19.1