Upload folder using huggingface_hub
Browse files- added_tokens.json +6 -0
- config.json +30 -0
- generation_config.json +6 -0
- latest +1 -0
- model-00001-of-00019.safetensors +3 -0
- model-00002-of-00019.safetensors +3 -0
- model-00003-of-00019.safetensors +3 -0
- model-00004-of-00019.safetensors +3 -0
- model-00005-of-00019.safetensors +3 -0
- model-00006-of-00019.safetensors +3 -0
- model-00007-of-00019.safetensors +3 -0
- model-00008-of-00019.safetensors +3 -0
- model-00009-of-00019.safetensors +3 -0
- model-00010-of-00019.safetensors +3 -0
- model-00011-of-00019.safetensors +3 -0
- model-00012-of-00019.safetensors +3 -0
- model-00013-of-00019.safetensors +3 -0
- model-00014-of-00019.safetensors +3 -0
- model-00015-of-00019.safetensors +3 -0
- model-00016-of-00019.safetensors +3 -0
- model-00017-of-00019.safetensors +3 -0
- model-00018-of-00019.safetensors +3 -0
- model-00019-of-00019.safetensors +3 -0
- model.safetensors.index.json +1002 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +54 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +81 -0
- trainer_state.json +2451 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|content|>": 32000,
|
3 |
+
"<|from|>": 32002,
|
4 |
+
"<|recipient|>": 32001,
|
5 |
+
"<|stop|>": 32003
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/workspace/Mixtral-8x7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 8,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 1000000.0,
|
23 |
+
"router_aux_loss_coef": 0.02,
|
24 |
+
"sliding_window": 8192,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.37.0.dev0",
|
28 |
+
"use_cache": false,
|
29 |
+
"vocab_size": 32004
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.0.dev0"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step390
|
model-00001-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93c3f772ec27fe489528ae17fa654eb7ce6aadeacc5a6a92dfe5f574dd41873e
|
3 |
+
size 4892842352
|
model-00002-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ff7f75ce52d08f4012d32e6fdf73bd921256c757ff61ea0ac7efa5922cbb82b
|
3 |
+
size 4983004016
|
model-00003-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deb037e83865fd591fa2b7b3f34c66387737fdf8c75501ac8748265fa6394f17
|
3 |
+
size 4983004016
|
model-00004-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32273c6d972cf2595fa97dd0b39096d5899a04d316aeb6451466e0af38de9cd4
|
3 |
+
size 4899035200
|
model-00005-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efb7590f58434259fcf81771c533556ff509f1604c8f394a79338b72fa317de6
|
3 |
+
size 4983004016
|
model-00006-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98d58c1b7155b91ef57eff2775f39b8e1753fc346702d6255030d10d0ff9e55d
|
3 |
+
size 4983004016
|
model-00007-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a44f76cc489ca160d51b62f02cc9ddbe545e7bd7fa23645929799fe5cce5405
|
3 |
+
size 4899035248
|
model-00008-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01883816c679d972d1378c3195cd628ed37bfaaa3bb419166f3ce058df081da8
|
3 |
+
size 4983004072
|
model-00009-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:984ac02c195e7ad0821d3a82cd912ce61f31bfa787447e4c019be9755f1126a3
|
3 |
+
size 4983004072
|
model-00010-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbfab0a9ac1d4a9d5b0c18d5b1097ebb95eeb25a4e6eef204186cb905a3fad8a
|
3 |
+
size 4899035248
|
model-00011-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2b85798127edfeef0fcffb4024a8e2f63253a06ff86a60f950d702744d69a37
|
3 |
+
size 4983004072
|
model-00012-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67d929b3bb683811bc00982c53e43e6cd98d00ccbf56a5386cd8e7e00e6a3775
|
3 |
+
size 4983004072
|
model-00013-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2acd46c403eef098dbe4ac25329b0015189c22d1a2e6f2d1067bda7cdebb9849
|
3 |
+
size 4983004072
|
model-00014-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84052715935e9c28eeb89f557d0fba5b48375824fdd3b3321730bf6f06b7745
|
3 |
+
size 4899035248
|
model-00015-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a63fd99d10c1aeeea7302d008f57a22589fc7a45bed07b8ee5fbe21e3e6e71
|
3 |
+
size 4983004072
|
model-00016-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e1ae2d0974ae0bc41f4212c025025814efab16c410fcbb78200baf392cc7b9e
|
3 |
+
size 4983004072
|
model-00017-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e34c94dbe625360e3f6c9a5d93c6c64e5a0d529c7182a9a0dc7a67c3ac75448
|
3 |
+
size 4899035248
|
model-00018-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3885afad124e959f38244f8875b37e075361d349bbd85d551c181aaf8cd11251
|
3 |
+
size 4983004072
|
model-00019-of-00019.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a1bdc473a87a9784649be3808b458066d385eb4407ed7fea96065dab3c58db3
|
3 |
+
size 4221711856
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 93405650944
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00019-of-00019.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00019.safetensors",
|
8 |
+
"model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00019.safetensors",
|
9 |
+
"model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00019.safetensors",
|
10 |
+
"model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00019.safetensors",
|
11 |
+
"model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00019.safetensors",
|
12 |
+
"model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00019.safetensors",
|
13 |
+
"model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00019.safetensors",
|
14 |
+
"model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00019.safetensors",
|
15 |
+
"model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00019.safetensors",
|
16 |
+
"model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00019.safetensors",
|
17 |
+
"model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00019.safetensors",
|
18 |
+
"model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00019.safetensors",
|
19 |
+
"model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00019.safetensors",
|
20 |
+
"model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00019.safetensors",
|
21 |
+
"model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00019.safetensors",
|
22 |
+
"model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00019.safetensors",
|
23 |
+
"model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00019.safetensors",
|
24 |
+
"model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00019.safetensors",
|
25 |
+
"model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00019.safetensors",
|
26 |
+
"model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00019.safetensors",
|
27 |
+
"model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00019.safetensors",
|
28 |
+
"model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00019.safetensors",
|
29 |
+
"model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00019.safetensors",
|
30 |
+
"model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00019.safetensors",
|
31 |
+
"model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00019.safetensors",
|
32 |
+
"model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00019.safetensors",
|
33 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00019.safetensors",
|
34 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00019.safetensors",
|
35 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
|
36 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00019.safetensors",
|
37 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
|
38 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
|
39 |
+
"model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00019.safetensors",
|
40 |
+
"model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00019.safetensors",
|
41 |
+
"model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00019.safetensors",
|
42 |
+
"model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00019.safetensors",
|
43 |
+
"model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00019.safetensors",
|
44 |
+
"model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00019.safetensors",
|
45 |
+
"model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00019.safetensors",
|
46 |
+
"model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00019.safetensors",
|
47 |
+
"model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00019.safetensors",
|
48 |
+
"model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00019.safetensors",
|
49 |
+
"model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00019.safetensors",
|
50 |
+
"model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00019.safetensors",
|
51 |
+
"model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00019.safetensors",
|
52 |
+
"model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00019.safetensors",
|
53 |
+
"model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00019.safetensors",
|
54 |
+
"model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00019.safetensors",
|
55 |
+
"model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00019.safetensors",
|
56 |
+
"model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00019.safetensors",
|
57 |
+
"model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00019.safetensors",
|
58 |
+
"model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00019.safetensors",
|
59 |
+
"model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00019.safetensors",
|
60 |
+
"model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00019.safetensors",
|
61 |
+
"model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00019.safetensors",
|
62 |
+
"model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00019.safetensors",
|
63 |
+
"model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00019.safetensors",
|
64 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00019.safetensors",
|
65 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00019.safetensors",
|
66 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
|
67 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00019.safetensors",
|
68 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
|
69 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
|
70 |
+
"model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00019.safetensors",
|
71 |
+
"model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00019.safetensors",
|
72 |
+
"model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00019.safetensors",
|
73 |
+
"model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00007-of-00019.safetensors",
|
74 |
+
"model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00007-of-00019.safetensors",
|
75 |
+
"model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00007-of-00019.safetensors",
|
76 |
+
"model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00019.safetensors",
|
77 |
+
"model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00019.safetensors",
|
78 |
+
"model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00019.safetensors",
|
79 |
+
"model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00019.safetensors",
|
80 |
+
"model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00019.safetensors",
|
81 |
+
"model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00019.safetensors",
|
82 |
+
"model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00019.safetensors",
|
83 |
+
"model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00019.safetensors",
|
84 |
+
"model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00019.safetensors",
|
85 |
+
"model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00019.safetensors",
|
86 |
+
"model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00019.safetensors",
|
87 |
+
"model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00019.safetensors",
|
88 |
+
"model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00019.safetensors",
|
89 |
+
"model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00019.safetensors",
|
90 |
+
"model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00019.safetensors",
|
91 |
+
"model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00019.safetensors",
|
92 |
+
"model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00019.safetensors",
|
93 |
+
"model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00019.safetensors",
|
94 |
+
"model.layers.10.block_sparse_moe.gate.weight": "model-00006-of-00019.safetensors",
|
95 |
+
"model.layers.10.input_layernorm.weight": "model-00007-of-00019.safetensors",
|
96 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00007-of-00019.safetensors",
|
97 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
|
98 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
|
99 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
|
100 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
|
101 |
+
"model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00019.safetensors",
|
102 |
+
"model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00019.safetensors",
|
103 |
+
"model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00019.safetensors",
|
104 |
+
"model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00007-of-00019.safetensors",
|
105 |
+
"model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00007-of-00019.safetensors",
|
106 |
+
"model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00007-of-00019.safetensors",
|
107 |
+
"model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00019.safetensors",
|
108 |
+
"model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00019.safetensors",
|
109 |
+
"model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00019.safetensors",
|
110 |
+
"model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00019.safetensors",
|
111 |
+
"model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00019.safetensors",
|
112 |
+
"model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00019.safetensors",
|
113 |
+
"model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00019.safetensors",
|
114 |
+
"model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00019.safetensors",
|
115 |
+
"model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00019.safetensors",
|
116 |
+
"model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00019.safetensors",
|
117 |
+
"model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00019.safetensors",
|
118 |
+
"model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00019.safetensors",
|
119 |
+
"model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00019.safetensors",
|
120 |
+
"model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00019.safetensors",
|
121 |
+
"model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00019.safetensors",
|
122 |
+
"model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00019.safetensors",
|
123 |
+
"model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00019.safetensors",
|
124 |
+
"model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00019.safetensors",
|
125 |
+
"model.layers.11.block_sparse_moe.gate.weight": "model-00007-of-00019.safetensors",
|
126 |
+
"model.layers.11.input_layernorm.weight": "model-00008-of-00019.safetensors",
|
127 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
|
128 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00007-of-00019.safetensors",
|
129 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00007-of-00019.safetensors",
|
130 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00007-of-00019.safetensors",
|
131 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00007-of-00019.safetensors",
|
132 |
+
"model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00019.safetensors",
|
133 |
+
"model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00019.safetensors",
|
134 |
+
"model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00019.safetensors",
|
135 |
+
"model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00008-of-00019.safetensors",
|
136 |
+
"model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00008-of-00019.safetensors",
|
137 |
+
"model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00008-of-00019.safetensors",
|
138 |
+
"model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00019.safetensors",
|
139 |
+
"model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00019.safetensors",
|
140 |
+
"model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00019.safetensors",
|
141 |
+
"model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00019.safetensors",
|
142 |
+
"model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00019.safetensors",
|
143 |
+
"model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00019.safetensors",
|
144 |
+
"model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00019.safetensors",
|
145 |
+
"model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00019.safetensors",
|
146 |
+
"model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00019.safetensors",
|
147 |
+
"model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00019.safetensors",
|
148 |
+
"model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00019.safetensors",
|
149 |
+
"model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00019.safetensors",
|
150 |
+
"model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00019.safetensors",
|
151 |
+
"model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00019.safetensors",
|
152 |
+
"model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00019.safetensors",
|
153 |
+
"model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00019.safetensors",
|
154 |
+
"model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00019.safetensors",
|
155 |
+
"model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00019.safetensors",
|
156 |
+
"model.layers.12.block_sparse_moe.gate.weight": "model-00008-of-00019.safetensors",
|
157 |
+
"model.layers.12.input_layernorm.weight": "model-00008-of-00019.safetensors",
|
158 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
|
159 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
|
160 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
|
161 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
|
162 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
|
163 |
+
"model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00019.safetensors",
|
164 |
+
"model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00019.safetensors",
|
165 |
+
"model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00019.safetensors",
|
166 |
+
"model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00008-of-00019.safetensors",
|
167 |
+
"model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00008-of-00019.safetensors",
|
168 |
+
"model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00008-of-00019.safetensors",
|
169 |
+
"model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00019.safetensors",
|
170 |
+
"model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00019.safetensors",
|
171 |
+
"model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00019.safetensors",
|
172 |
+
"model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00019.safetensors",
|
173 |
+
"model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00019.safetensors",
|
174 |
+
"model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00019.safetensors",
|
175 |
+
"model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00019.safetensors",
|
176 |
+
"model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00009-of-00019.safetensors",
|
177 |
+
"model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00009-of-00019.safetensors",
|
178 |
+
"model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00009-of-00019.safetensors",
|
179 |
+
"model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00009-of-00019.safetensors",
|
180 |
+
"model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00009-of-00019.safetensors",
|
181 |
+
"model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00009-of-00019.safetensors",
|
182 |
+
"model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00009-of-00019.safetensors",
|
183 |
+
"model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00009-of-00019.safetensors",
|
184 |
+
"model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00009-of-00019.safetensors",
|
185 |
+
"model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00009-of-00019.safetensors",
|
186 |
+
"model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00009-of-00019.safetensors",
|
187 |
+
"model.layers.13.block_sparse_moe.gate.weight": "model-00008-of-00019.safetensors",
|
188 |
+
"model.layers.13.input_layernorm.weight": "model-00009-of-00019.safetensors",
|
189 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00009-of-00019.safetensors",
|
190 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
|
191 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
|
192 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
|
193 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
|
194 |
+
"model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00009-of-00019.safetensors",
|
195 |
+
"model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00009-of-00019.safetensors",
|
196 |
+
"model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00009-of-00019.safetensors",
|
197 |
+
"model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00009-of-00019.safetensors",
|
198 |
+
"model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00009-of-00019.safetensors",
|
199 |
+
"model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00009-of-00019.safetensors",
|
200 |
+
"model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00009-of-00019.safetensors",
|
201 |
+
"model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00009-of-00019.safetensors",
|
202 |
+
"model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00009-of-00019.safetensors",
|
203 |
+
"model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00009-of-00019.safetensors",
|
204 |
+
"model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00009-of-00019.safetensors",
|
205 |
+
"model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00009-of-00019.safetensors",
|
206 |
+
"model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00009-of-00019.safetensors",
|
207 |
+
"model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00009-of-00019.safetensors",
|
208 |
+
"model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00009-of-00019.safetensors",
|
209 |
+
"model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00009-of-00019.safetensors",
|
210 |
+
"model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00009-of-00019.safetensors",
|
211 |
+
"model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00009-of-00019.safetensors",
|
212 |
+
"model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00009-of-00019.safetensors",
|
213 |
+
"model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00009-of-00019.safetensors",
|
214 |
+
"model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00009-of-00019.safetensors",
|
215 |
+
"model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00009-of-00019.safetensors",
|
216 |
+
"model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00009-of-00019.safetensors",
|
217 |
+
"model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00009-of-00019.safetensors",
|
218 |
+
"model.layers.14.block_sparse_moe.gate.weight": "model-00009-of-00019.safetensors",
|
219 |
+
"model.layers.14.input_layernorm.weight": "model-00009-of-00019.safetensors",
|
220 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00009-of-00019.safetensors",
|
221 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00009-of-00019.safetensors",
|
222 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00009-of-00019.safetensors",
|
223 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00009-of-00019.safetensors",
|
224 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00009-of-00019.safetensors",
|
225 |
+
"model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00009-of-00019.safetensors",
|
226 |
+
"model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00009-of-00019.safetensors",
|
227 |
+
"model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00009-of-00019.safetensors",
|
228 |
+
"model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00009-of-00019.safetensors",
|
229 |
+
"model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00009-of-00019.safetensors",
|
230 |
+
"model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00009-of-00019.safetensors",
|
231 |
+
"model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00010-of-00019.safetensors",
|
232 |
+
"model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00010-of-00019.safetensors",
|
233 |
+
"model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00010-of-00019.safetensors",
|
234 |
+
"model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00010-of-00019.safetensors",
|
235 |
+
"model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00010-of-00019.safetensors",
|
236 |
+
"model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00010-of-00019.safetensors",
|
237 |
+
"model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00010-of-00019.safetensors",
|
238 |
+
"model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00010-of-00019.safetensors",
|
239 |
+
"model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00010-of-00019.safetensors",
|
240 |
+
"model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00010-of-00019.safetensors",
|
241 |
+
"model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00010-of-00019.safetensors",
|
242 |
+
"model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00010-of-00019.safetensors",
|
243 |
+
"model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00010-of-00019.safetensors",
|
244 |
+
"model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00010-of-00019.safetensors",
|
245 |
+
"model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00010-of-00019.safetensors",
|
246 |
+
"model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00010-of-00019.safetensors",
|
247 |
+
"model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00010-of-00019.safetensors",
|
248 |
+
"model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00010-of-00019.safetensors",
|
249 |
+
"model.layers.15.block_sparse_moe.gate.weight": "model-00009-of-00019.safetensors",
|
250 |
+
"model.layers.15.input_layernorm.weight": "model-00010-of-00019.safetensors",
|
251 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00010-of-00019.safetensors",
|
252 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00009-of-00019.safetensors",
|
253 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00009-of-00019.safetensors",
|
254 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00009-of-00019.safetensors",
|
255 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00009-of-00019.safetensors",
|
256 |
+
"model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00010-of-00019.safetensors",
|
257 |
+
"model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00010-of-00019.safetensors",
|
258 |
+
"model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00010-of-00019.safetensors",
|
259 |
+
"model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00010-of-00019.safetensors",
|
260 |
+
"model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00010-of-00019.safetensors",
|
261 |
+
"model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00010-of-00019.safetensors",
|
262 |
+
"model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00010-of-00019.safetensors",
|
263 |
+
"model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00010-of-00019.safetensors",
|
264 |
+
"model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00010-of-00019.safetensors",
|
265 |
+
"model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00010-of-00019.safetensors",
|
266 |
+
"model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00010-of-00019.safetensors",
|
267 |
+
"model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00010-of-00019.safetensors",
|
268 |
+
"model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00010-of-00019.safetensors",
|
269 |
+
"model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00010-of-00019.safetensors",
|
270 |
+
"model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00010-of-00019.safetensors",
|
271 |
+
"model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00010-of-00019.safetensors",
|
272 |
+
"model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00010-of-00019.safetensors",
|
273 |
+
"model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00010-of-00019.safetensors",
|
274 |
+
"model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00010-of-00019.safetensors",
|
275 |
+
"model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00010-of-00019.safetensors",
|
276 |
+
"model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00010-of-00019.safetensors",
|
277 |
+
"model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00010-of-00019.safetensors",
|
278 |
+
"model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00010-of-00019.safetensors",
|
279 |
+
"model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00011-of-00019.safetensors",
|
280 |
+
"model.layers.16.block_sparse_moe.gate.weight": "model-00010-of-00019.safetensors",
|
281 |
+
"model.layers.16.input_layernorm.weight": "model-00011-of-00019.safetensors",
|
282 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
|
283 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00010-of-00019.safetensors",
|
284 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00010-of-00019.safetensors",
|
285 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00010-of-00019.safetensors",
|
286 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00010-of-00019.safetensors",
|
287 |
+
"model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00011-of-00019.safetensors",
|
288 |
+
"model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00011-of-00019.safetensors",
|
289 |
+
"model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00011-of-00019.safetensors",
|
290 |
+
"model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00011-of-00019.safetensors",
|
291 |
+
"model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00011-of-00019.safetensors",
|
292 |
+
"model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00011-of-00019.safetensors",
|
293 |
+
"model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00011-of-00019.safetensors",
|
294 |
+
"model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00011-of-00019.safetensors",
|
295 |
+
"model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00011-of-00019.safetensors",
|
296 |
+
"model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00011-of-00019.safetensors",
|
297 |
+
"model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00011-of-00019.safetensors",
|
298 |
+
"model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00011-of-00019.safetensors",
|
299 |
+
"model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00011-of-00019.safetensors",
|
300 |
+
"model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00011-of-00019.safetensors",
|
301 |
+
"model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00011-of-00019.safetensors",
|
302 |
+
"model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00011-of-00019.safetensors",
|
303 |
+
"model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00011-of-00019.safetensors",
|
304 |
+
"model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00011-of-00019.safetensors",
|
305 |
+
"model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00011-of-00019.safetensors",
|
306 |
+
"model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00011-of-00019.safetensors",
|
307 |
+
"model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00011-of-00019.safetensors",
|
308 |
+
"model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00011-of-00019.safetensors",
|
309 |
+
"model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00011-of-00019.safetensors",
|
310 |
+
"model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00011-of-00019.safetensors",
|
311 |
+
"model.layers.17.block_sparse_moe.gate.weight": "model-00011-of-00019.safetensors",
|
312 |
+
"model.layers.17.input_layernorm.weight": "model-00011-of-00019.safetensors",
|
313 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
|
314 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
|
315 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
|
316 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
|
317 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
|
318 |
+
"model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00011-of-00019.safetensors",
|
319 |
+
"model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00011-of-00019.safetensors",
|
320 |
+
"model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00011-of-00019.safetensors",
|
321 |
+
"model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00011-of-00019.safetensors",
|
322 |
+
"model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00011-of-00019.safetensors",
|
323 |
+
"model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00011-of-00019.safetensors",
|
324 |
+
"model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00011-of-00019.safetensors",
|
325 |
+
"model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00011-of-00019.safetensors",
|
326 |
+
"model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00011-of-00019.safetensors",
|
327 |
+
"model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00011-of-00019.safetensors",
|
328 |
+
"model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00011-of-00019.safetensors",
|
329 |
+
"model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00011-of-00019.safetensors",
|
330 |
+
"model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00011-of-00019.safetensors",
|
331 |
+
"model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00011-of-00019.safetensors",
|
332 |
+
"model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00011-of-00019.safetensors",
|
333 |
+
"model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00011-of-00019.safetensors",
|
334 |
+
"model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00012-of-00019.safetensors",
|
335 |
+
"model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00012-of-00019.safetensors",
|
336 |
+
"model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00012-of-00019.safetensors",
|
337 |
+
"model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00012-of-00019.safetensors",
|
338 |
+
"model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00012-of-00019.safetensors",
|
339 |
+
"model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00012-of-00019.safetensors",
|
340 |
+
"model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00012-of-00019.safetensors",
|
341 |
+
"model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00012-of-00019.safetensors",
|
342 |
+
"model.layers.18.block_sparse_moe.gate.weight": "model-00011-of-00019.safetensors",
|
343 |
+
"model.layers.18.input_layernorm.weight": "model-00012-of-00019.safetensors",
|
344 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00012-of-00019.safetensors",
|
345 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
|
346 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
|
347 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
|
348 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
|
349 |
+
"model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00012-of-00019.safetensors",
|
350 |
+
"model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00012-of-00019.safetensors",
|
351 |
+
"model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00012-of-00019.safetensors",
|
352 |
+
"model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00012-of-00019.safetensors",
|
353 |
+
"model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00012-of-00019.safetensors",
|
354 |
+
"model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00012-of-00019.safetensors",
|
355 |
+
"model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00012-of-00019.safetensors",
|
356 |
+
"model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00012-of-00019.safetensors",
|
357 |
+
"model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00012-of-00019.safetensors",
|
358 |
+
"model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00012-of-00019.safetensors",
|
359 |
+
"model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00012-of-00019.safetensors",
|
360 |
+
"model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00012-of-00019.safetensors",
|
361 |
+
"model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00012-of-00019.safetensors",
|
362 |
+
"model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00012-of-00019.safetensors",
|
363 |
+
"model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00012-of-00019.safetensors",
|
364 |
+
"model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00012-of-00019.safetensors",
|
365 |
+
"model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00012-of-00019.safetensors",
|
366 |
+
"model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00012-of-00019.safetensors",
|
367 |
+
"model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00012-of-00019.safetensors",
|
368 |
+
"model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00012-of-00019.safetensors",
|
369 |
+
"model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00012-of-00019.safetensors",
|
370 |
+
"model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00012-of-00019.safetensors",
|
371 |
+
"model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00012-of-00019.safetensors",
|
372 |
+
"model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00012-of-00019.safetensors",
|
373 |
+
"model.layers.19.block_sparse_moe.gate.weight": "model-00012-of-00019.safetensors",
|
374 |
+
"model.layers.19.input_layernorm.weight": "model-00012-of-00019.safetensors",
|
375 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00012-of-00019.safetensors",
|
376 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00012-of-00019.safetensors",
|
377 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00012-of-00019.safetensors",
|
378 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00012-of-00019.safetensors",
|
379 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00012-of-00019.safetensors",
|
380 |
+
"model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00019.safetensors",
|
381 |
+
"model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00019.safetensors",
|
382 |
+
"model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00019.safetensors",
|
383 |
+
"model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00019.safetensors",
|
384 |
+
"model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00019.safetensors",
|
385 |
+
"model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00019.safetensors",
|
386 |
+
"model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00019.safetensors",
|
387 |
+
"model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00019.safetensors",
|
388 |
+
"model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00019.safetensors",
|
389 |
+
"model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00019.safetensors",
|
390 |
+
"model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00019.safetensors",
|
391 |
+
"model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00019.safetensors",
|
392 |
+
"model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00019.safetensors",
|
393 |
+
"model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00019.safetensors",
|
394 |
+
"model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00019.safetensors",
|
395 |
+
"model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00019.safetensors",
|
396 |
+
"model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00019.safetensors",
|
397 |
+
"model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00019.safetensors",
|
398 |
+
"model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00019.safetensors",
|
399 |
+
"model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00019.safetensors",
|
400 |
+
"model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00019.safetensors",
|
401 |
+
"model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00019.safetensors",
|
402 |
+
"model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00019.safetensors",
|
403 |
+
"model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00019.safetensors",
|
404 |
+
"model.layers.2.block_sparse_moe.gate.weight": "model-00002-of-00019.safetensors",
|
405 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00019.safetensors",
|
406 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00019.safetensors",
|
407 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00019.safetensors",
|
408 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
|
409 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00019.safetensors",
|
410 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00019.safetensors",
|
411 |
+
"model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00012-of-00019.safetensors",
|
412 |
+
"model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00012-of-00019.safetensors",
|
413 |
+
"model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00012-of-00019.safetensors",
|
414 |
+
"model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00012-of-00019.safetensors",
|
415 |
+
"model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00012-of-00019.safetensors",
|
416 |
+
"model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00012-of-00019.safetensors",
|
417 |
+
"model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00012-of-00019.safetensors",
|
418 |
+
"model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00012-of-00019.safetensors",
|
419 |
+
"model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00012-of-00019.safetensors",
|
420 |
+
"model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00013-of-00019.safetensors",
|
421 |
+
"model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00013-of-00019.safetensors",
|
422 |
+
"model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00013-of-00019.safetensors",
|
423 |
+
"model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00013-of-00019.safetensors",
|
424 |
+
"model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00013-of-00019.safetensors",
|
425 |
+
"model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00013-of-00019.safetensors",
|
426 |
+
"model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00013-of-00019.safetensors",
|
427 |
+
"model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00013-of-00019.safetensors",
|
428 |
+
"model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00013-of-00019.safetensors",
|
429 |
+
"model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00013-of-00019.safetensors",
|
430 |
+
"model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00013-of-00019.safetensors",
|
431 |
+
"model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00013-of-00019.safetensors",
|
432 |
+
"model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00013-of-00019.safetensors",
|
433 |
+
"model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00013-of-00019.safetensors",
|
434 |
+
"model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00013-of-00019.safetensors",
|
435 |
+
"model.layers.20.block_sparse_moe.gate.weight": "model-00012-of-00019.safetensors",
|
436 |
+
"model.layers.20.input_layernorm.weight": "model-00013-of-00019.safetensors",
|
437 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
|
438 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00012-of-00019.safetensors",
|
439 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00012-of-00019.safetensors",
|
440 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00012-of-00019.safetensors",
|
441 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00012-of-00019.safetensors",
|
442 |
+
"model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00013-of-00019.safetensors",
|
443 |
+
"model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00013-of-00019.safetensors",
|
444 |
+
"model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00013-of-00019.safetensors",
|
445 |
+
"model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00013-of-00019.safetensors",
|
446 |
+
"model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00013-of-00019.safetensors",
|
447 |
+
"model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00013-of-00019.safetensors",
|
448 |
+
"model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00013-of-00019.safetensors",
|
449 |
+
"model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00013-of-00019.safetensors",
|
450 |
+
"model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00013-of-00019.safetensors",
|
451 |
+
"model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00013-of-00019.safetensors",
|
452 |
+
"model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00013-of-00019.safetensors",
|
453 |
+
"model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00013-of-00019.safetensors",
|
454 |
+
"model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00013-of-00019.safetensors",
|
455 |
+
"model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00013-of-00019.safetensors",
|
456 |
+
"model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00013-of-00019.safetensors",
|
457 |
+
"model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00013-of-00019.safetensors",
|
458 |
+
"model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00013-of-00019.safetensors",
|
459 |
+
"model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00013-of-00019.safetensors",
|
460 |
+
"model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00013-of-00019.safetensors",
|
461 |
+
"model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00013-of-00019.safetensors",
|
462 |
+
"model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00013-of-00019.safetensors",
|
463 |
+
"model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00013-of-00019.safetensors",
|
464 |
+
"model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00013-of-00019.safetensors",
|
465 |
+
"model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00013-of-00019.safetensors",
|
466 |
+
"model.layers.21.block_sparse_moe.gate.weight": "model-00013-of-00019.safetensors",
|
467 |
+
"model.layers.21.input_layernorm.weight": "model-00013-of-00019.safetensors",
|
468 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
|
469 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
|
470 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
|
471 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
|
472 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
|
473 |
+
"model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00013-of-00019.safetensors",
|
474 |
+
"model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00013-of-00019.safetensors",
|
475 |
+
"model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00014-of-00019.safetensors",
|
476 |
+
"model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00014-of-00019.safetensors",
|
477 |
+
"model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00014-of-00019.safetensors",
|
478 |
+
"model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00014-of-00019.safetensors",
|
479 |
+
"model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00014-of-00019.safetensors",
|
480 |
+
"model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00014-of-00019.safetensors",
|
481 |
+
"model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00014-of-00019.safetensors",
|
482 |
+
"model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00014-of-00019.safetensors",
|
483 |
+
"model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00014-of-00019.safetensors",
|
484 |
+
"model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00014-of-00019.safetensors",
|
485 |
+
"model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00014-of-00019.safetensors",
|
486 |
+
"model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00014-of-00019.safetensors",
|
487 |
+
"model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00014-of-00019.safetensors",
|
488 |
+
"model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00014-of-00019.safetensors",
|
489 |
+
"model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00014-of-00019.safetensors",
|
490 |
+
"model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00014-of-00019.safetensors",
|
491 |
+
"model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00014-of-00019.safetensors",
|
492 |
+
"model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00014-of-00019.safetensors",
|
493 |
+
"model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00014-of-00019.safetensors",
|
494 |
+
"model.layers.22.block_sparse_moe.experts.7.w1.weight": "model-00014-of-00019.safetensors",
|
495 |
+
"model.layers.22.block_sparse_moe.experts.7.w2.weight": "model-00014-of-00019.safetensors",
|
496 |
+
"model.layers.22.block_sparse_moe.experts.7.w3.weight": "model-00014-of-00019.safetensors",
|
497 |
+
"model.layers.22.block_sparse_moe.gate.weight": "model-00013-of-00019.safetensors",
|
498 |
+
"model.layers.22.input_layernorm.weight": "model-00014-of-00019.safetensors",
|
499 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00014-of-00019.safetensors",
|
500 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
|
501 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
|
502 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
|
503 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
|
504 |
+
"model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00014-of-00019.safetensors",
|
505 |
+
"model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00014-of-00019.safetensors",
|
506 |
+
"model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00014-of-00019.safetensors",
|
507 |
+
"model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00014-of-00019.safetensors",
|
508 |
+
"model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00014-of-00019.safetensors",
|
509 |
+
"model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00014-of-00019.safetensors",
|
510 |
+
"model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00014-of-00019.safetensors",
|
511 |
+
"model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00014-of-00019.safetensors",
|
512 |
+
"model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00014-of-00019.safetensors",
|
513 |
+
"model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00014-of-00019.safetensors",
|
514 |
+
"model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00014-of-00019.safetensors",
|
515 |
+
"model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00014-of-00019.safetensors",
|
516 |
+
"model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00014-of-00019.safetensors",
|
517 |
+
"model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00014-of-00019.safetensors",
|
518 |
+
"model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00014-of-00019.safetensors",
|
519 |
+
"model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00014-of-00019.safetensors",
|
520 |
+
"model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00014-of-00019.safetensors",
|
521 |
+
"model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00014-of-00019.safetensors",
|
522 |
+
"model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00014-of-00019.safetensors",
|
523 |
+
"model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00015-of-00019.safetensors",
|
524 |
+
"model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00015-of-00019.safetensors",
|
525 |
+
"model.layers.23.block_sparse_moe.experts.7.w1.weight": "model-00015-of-00019.safetensors",
|
526 |
+
"model.layers.23.block_sparse_moe.experts.7.w2.weight": "model-00015-of-00019.safetensors",
|
527 |
+
"model.layers.23.block_sparse_moe.experts.7.w3.weight": "model-00015-of-00019.safetensors",
|
528 |
+
"model.layers.23.block_sparse_moe.gate.weight": "model-00014-of-00019.safetensors",
|
529 |
+
"model.layers.23.input_layernorm.weight": "model-00015-of-00019.safetensors",
|
530 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
|
531 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00014-of-00019.safetensors",
|
532 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00014-of-00019.safetensors",
|
533 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00014-of-00019.safetensors",
|
534 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00014-of-00019.safetensors",
|
535 |
+
"model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00015-of-00019.safetensors",
|
536 |
+
"model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00015-of-00019.safetensors",
|
537 |
+
"model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00015-of-00019.safetensors",
|
538 |
+
"model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00015-of-00019.safetensors",
|
539 |
+
"model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00015-of-00019.safetensors",
|
540 |
+
"model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00015-of-00019.safetensors",
|
541 |
+
"model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00015-of-00019.safetensors",
|
542 |
+
"model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00015-of-00019.safetensors",
|
543 |
+
"model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00015-of-00019.safetensors",
|
544 |
+
"model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00015-of-00019.safetensors",
|
545 |
+
"model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00015-of-00019.safetensors",
|
546 |
+
"model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00015-of-00019.safetensors",
|
547 |
+
"model.layers.24.block_sparse_moe.experts.4.w1.weight": "model-00015-of-00019.safetensors",
|
548 |
+
"model.layers.24.block_sparse_moe.experts.4.w2.weight": "model-00015-of-00019.safetensors",
|
549 |
+
"model.layers.24.block_sparse_moe.experts.4.w3.weight": "model-00015-of-00019.safetensors",
|
550 |
+
"model.layers.24.block_sparse_moe.experts.5.w1.weight": "model-00015-of-00019.safetensors",
|
551 |
+
"model.layers.24.block_sparse_moe.experts.5.w2.weight": "model-00015-of-00019.safetensors",
|
552 |
+
"model.layers.24.block_sparse_moe.experts.5.w3.weight": "model-00015-of-00019.safetensors",
|
553 |
+
"model.layers.24.block_sparse_moe.experts.6.w1.weight": "model-00015-of-00019.safetensors",
|
554 |
+
"model.layers.24.block_sparse_moe.experts.6.w2.weight": "model-00015-of-00019.safetensors",
|
555 |
+
"model.layers.24.block_sparse_moe.experts.6.w3.weight": "model-00015-of-00019.safetensors",
|
556 |
+
"model.layers.24.block_sparse_moe.experts.7.w1.weight": "model-00015-of-00019.safetensors",
|
557 |
+
"model.layers.24.block_sparse_moe.experts.7.w2.weight": "model-00015-of-00019.safetensors",
|
558 |
+
"model.layers.24.block_sparse_moe.experts.7.w3.weight": "model-00015-of-00019.safetensors",
|
559 |
+
"model.layers.24.block_sparse_moe.gate.weight": "model-00015-of-00019.safetensors",
|
560 |
+
"model.layers.24.input_layernorm.weight": "model-00015-of-00019.safetensors",
|
561 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
|
562 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
|
563 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
|
564 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
|
565 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
|
566 |
+
"model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00015-of-00019.safetensors",
|
567 |
+
"model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00015-of-00019.safetensors",
|
568 |
+
"model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00015-of-00019.safetensors",
|
569 |
+
"model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00015-of-00019.safetensors",
|
570 |
+
"model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00015-of-00019.safetensors",
|
571 |
+
"model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00015-of-00019.safetensors",
|
572 |
+
"model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00015-of-00019.safetensors",
|
573 |
+
"model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00015-of-00019.safetensors",
|
574 |
+
"model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00015-of-00019.safetensors",
|
575 |
+
"model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00015-of-00019.safetensors",
|
576 |
+
"model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00015-of-00019.safetensors",
|
577 |
+
"model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00015-of-00019.safetensors",
|
578 |
+
"model.layers.25.block_sparse_moe.experts.4.w1.weight": "model-00016-of-00019.safetensors",
|
579 |
+
"model.layers.25.block_sparse_moe.experts.4.w2.weight": "model-00016-of-00019.safetensors",
|
580 |
+
"model.layers.25.block_sparse_moe.experts.4.w3.weight": "model-00016-of-00019.safetensors",
|
581 |
+
"model.layers.25.block_sparse_moe.experts.5.w1.weight": "model-00016-of-00019.safetensors",
|
582 |
+
"model.layers.25.block_sparse_moe.experts.5.w2.weight": "model-00016-of-00019.safetensors",
|
583 |
+
"model.layers.25.block_sparse_moe.experts.5.w3.weight": "model-00016-of-00019.safetensors",
|
584 |
+
"model.layers.25.block_sparse_moe.experts.6.w1.weight": "model-00016-of-00019.safetensors",
|
585 |
+
"model.layers.25.block_sparse_moe.experts.6.w2.weight": "model-00016-of-00019.safetensors",
|
586 |
+
"model.layers.25.block_sparse_moe.experts.6.w3.weight": "model-00016-of-00019.safetensors",
|
587 |
+
"model.layers.25.block_sparse_moe.experts.7.w1.weight": "model-00016-of-00019.safetensors",
|
588 |
+
"model.layers.25.block_sparse_moe.experts.7.w2.weight": "model-00016-of-00019.safetensors",
|
589 |
+
"model.layers.25.block_sparse_moe.experts.7.w3.weight": "model-00016-of-00019.safetensors",
|
590 |
+
"model.layers.25.block_sparse_moe.gate.weight": "model-00015-of-00019.safetensors",
|
591 |
+
"model.layers.25.input_layernorm.weight": "model-00016-of-00019.safetensors",
|
592 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00016-of-00019.safetensors",
|
593 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
|
594 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
|
595 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
|
596 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
|
597 |
+
"model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00016-of-00019.safetensors",
|
598 |
+
"model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00016-of-00019.safetensors",
|
599 |
+
"model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00016-of-00019.safetensors",
|
600 |
+
"model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00016-of-00019.safetensors",
|
601 |
+
"model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00016-of-00019.safetensors",
|
602 |
+
"model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00016-of-00019.safetensors",
|
603 |
+
"model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00016-of-00019.safetensors",
|
604 |
+
"model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00016-of-00019.safetensors",
|
605 |
+
"model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00016-of-00019.safetensors",
|
606 |
+
"model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00016-of-00019.safetensors",
|
607 |
+
"model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00016-of-00019.safetensors",
|
608 |
+
"model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00016-of-00019.safetensors",
|
609 |
+
"model.layers.26.block_sparse_moe.experts.4.w1.weight": "model-00016-of-00019.safetensors",
|
610 |
+
"model.layers.26.block_sparse_moe.experts.4.w2.weight": "model-00016-of-00019.safetensors",
|
611 |
+
"model.layers.26.block_sparse_moe.experts.4.w3.weight": "model-00016-of-00019.safetensors",
|
612 |
+
"model.layers.26.block_sparse_moe.experts.5.w1.weight": "model-00016-of-00019.safetensors",
|
613 |
+
"model.layers.26.block_sparse_moe.experts.5.w2.weight": "model-00016-of-00019.safetensors",
|
614 |
+
"model.layers.26.block_sparse_moe.experts.5.w3.weight": "model-00016-of-00019.safetensors",
|
615 |
+
"model.layers.26.block_sparse_moe.experts.6.w1.weight": "model-00016-of-00019.safetensors",
|
616 |
+
"model.layers.26.block_sparse_moe.experts.6.w2.weight": "model-00016-of-00019.safetensors",
|
617 |
+
"model.layers.26.block_sparse_moe.experts.6.w3.weight": "model-00016-of-00019.safetensors",
|
618 |
+
"model.layers.26.block_sparse_moe.experts.7.w1.weight": "model-00016-of-00019.safetensors",
|
619 |
+
"model.layers.26.block_sparse_moe.experts.7.w2.weight": "model-00016-of-00019.safetensors",
|
620 |
+
"model.layers.26.block_sparse_moe.experts.7.w3.weight": "model-00016-of-00019.safetensors",
|
621 |
+
"model.layers.26.block_sparse_moe.gate.weight": "model-00016-of-00019.safetensors",
|
622 |
+
"model.layers.26.input_layernorm.weight": "model-00016-of-00019.safetensors",
|
623 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00016-of-00019.safetensors",
|
624 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00016-of-00019.safetensors",
|
625 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00016-of-00019.safetensors",
|
626 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00016-of-00019.safetensors",
|
627 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00016-of-00019.safetensors",
|
628 |
+
"model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00016-of-00019.safetensors",
|
629 |
+
"model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00016-of-00019.safetensors",
|
630 |
+
"model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00016-of-00019.safetensors",
|
631 |
+
"model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00016-of-00019.safetensors",
|
632 |
+
"model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00016-of-00019.safetensors",
|
633 |
+
"model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00017-of-00019.safetensors",
|
634 |
+
"model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00017-of-00019.safetensors",
|
635 |
+
"model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00017-of-00019.safetensors",
|
636 |
+
"model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00017-of-00019.safetensors",
|
637 |
+
"model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00017-of-00019.safetensors",
|
638 |
+
"model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00017-of-00019.safetensors",
|
639 |
+
"model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00017-of-00019.safetensors",
|
640 |
+
"model.layers.27.block_sparse_moe.experts.4.w1.weight": "model-00017-of-00019.safetensors",
|
641 |
+
"model.layers.27.block_sparse_moe.experts.4.w2.weight": "model-00017-of-00019.safetensors",
|
642 |
+
"model.layers.27.block_sparse_moe.experts.4.w3.weight": "model-00017-of-00019.safetensors",
|
643 |
+
"model.layers.27.block_sparse_moe.experts.5.w1.weight": "model-00017-of-00019.safetensors",
|
644 |
+
"model.layers.27.block_sparse_moe.experts.5.w2.weight": "model-00017-of-00019.safetensors",
|
645 |
+
"model.layers.27.block_sparse_moe.experts.5.w3.weight": "model-00017-of-00019.safetensors",
|
646 |
+
"model.layers.27.block_sparse_moe.experts.6.w1.weight": "model-00017-of-00019.safetensors",
|
647 |
+
"model.layers.27.block_sparse_moe.experts.6.w2.weight": "model-00017-of-00019.safetensors",
|
648 |
+
"model.layers.27.block_sparse_moe.experts.6.w3.weight": "model-00017-of-00019.safetensors",
|
649 |
+
"model.layers.27.block_sparse_moe.experts.7.w1.weight": "model-00017-of-00019.safetensors",
|
650 |
+
"model.layers.27.block_sparse_moe.experts.7.w2.weight": "model-00017-of-00019.safetensors",
|
651 |
+
"model.layers.27.block_sparse_moe.experts.7.w3.weight": "model-00017-of-00019.safetensors",
|
652 |
+
"model.layers.27.block_sparse_moe.gate.weight": "model-00016-of-00019.safetensors",
|
653 |
+
"model.layers.27.input_layernorm.weight": "model-00017-of-00019.safetensors",
|
654 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00017-of-00019.safetensors",
|
655 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00016-of-00019.safetensors",
|
656 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00016-of-00019.safetensors",
|
657 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00016-of-00019.safetensors",
|
658 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00016-of-00019.safetensors",
|
659 |
+
"model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00017-of-00019.safetensors",
|
660 |
+
"model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00017-of-00019.safetensors",
|
661 |
+
"model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00017-of-00019.safetensors",
|
662 |
+
"model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00017-of-00019.safetensors",
|
663 |
+
"model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00017-of-00019.safetensors",
|
664 |
+
"model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00017-of-00019.safetensors",
|
665 |
+
"model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00017-of-00019.safetensors",
|
666 |
+
"model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00017-of-00019.safetensors",
|
667 |
+
"model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00017-of-00019.safetensors",
|
668 |
+
"model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00017-of-00019.safetensors",
|
669 |
+
"model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00017-of-00019.safetensors",
|
670 |
+
"model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00017-of-00019.safetensors",
|
671 |
+
"model.layers.28.block_sparse_moe.experts.4.w1.weight": "model-00017-of-00019.safetensors",
|
672 |
+
"model.layers.28.block_sparse_moe.experts.4.w2.weight": "model-00017-of-00019.safetensors",
|
673 |
+
"model.layers.28.block_sparse_moe.experts.4.w3.weight": "model-00017-of-00019.safetensors",
|
674 |
+
"model.layers.28.block_sparse_moe.experts.5.w1.weight": "model-00017-of-00019.safetensors",
|
675 |
+
"model.layers.28.block_sparse_moe.experts.5.w2.weight": "model-00017-of-00019.safetensors",
|
676 |
+
"model.layers.28.block_sparse_moe.experts.5.w3.weight": "model-00017-of-00019.safetensors",
|
677 |
+
"model.layers.28.block_sparse_moe.experts.6.w1.weight": "model-00017-of-00019.safetensors",
|
678 |
+
"model.layers.28.block_sparse_moe.experts.6.w2.weight": "model-00017-of-00019.safetensors",
|
679 |
+
"model.layers.28.block_sparse_moe.experts.6.w3.weight": "model-00017-of-00019.safetensors",
|
680 |
+
"model.layers.28.block_sparse_moe.experts.7.w1.weight": "model-00017-of-00019.safetensors",
|
681 |
+
"model.layers.28.block_sparse_moe.experts.7.w2.weight": "model-00018-of-00019.safetensors",
|
682 |
+
"model.layers.28.block_sparse_moe.experts.7.w3.weight": "model-00018-of-00019.safetensors",
|
683 |
+
"model.layers.28.block_sparse_moe.gate.weight": "model-00017-of-00019.safetensors",
|
684 |
+
"model.layers.28.input_layernorm.weight": "model-00018-of-00019.safetensors",
|
685 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
|
686 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00017-of-00019.safetensors",
|
687 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00017-of-00019.safetensors",
|
688 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00017-of-00019.safetensors",
|
689 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00017-of-00019.safetensors",
|
690 |
+
"model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00018-of-00019.safetensors",
|
691 |
+
"model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00018-of-00019.safetensors",
|
692 |
+
"model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00018-of-00019.safetensors",
|
693 |
+
"model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00018-of-00019.safetensors",
|
694 |
+
"model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00018-of-00019.safetensors",
|
695 |
+
"model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00018-of-00019.safetensors",
|
696 |
+
"model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00018-of-00019.safetensors",
|
697 |
+
"model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00018-of-00019.safetensors",
|
698 |
+
"model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00018-of-00019.safetensors",
|
699 |
+
"model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00018-of-00019.safetensors",
|
700 |
+
"model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00018-of-00019.safetensors",
|
701 |
+
"model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00018-of-00019.safetensors",
|
702 |
+
"model.layers.29.block_sparse_moe.experts.4.w1.weight": "model-00018-of-00019.safetensors",
|
703 |
+
"model.layers.29.block_sparse_moe.experts.4.w2.weight": "model-00018-of-00019.safetensors",
|
704 |
+
"model.layers.29.block_sparse_moe.experts.4.w3.weight": "model-00018-of-00019.safetensors",
|
705 |
+
"model.layers.29.block_sparse_moe.experts.5.w1.weight": "model-00018-of-00019.safetensors",
|
706 |
+
"model.layers.29.block_sparse_moe.experts.5.w2.weight": "model-00018-of-00019.safetensors",
|
707 |
+
"model.layers.29.block_sparse_moe.experts.5.w3.weight": "model-00018-of-00019.safetensors",
|
708 |
+
"model.layers.29.block_sparse_moe.experts.6.w1.weight": "model-00018-of-00019.safetensors",
|
709 |
+
"model.layers.29.block_sparse_moe.experts.6.w2.weight": "model-00018-of-00019.safetensors",
|
710 |
+
"model.layers.29.block_sparse_moe.experts.6.w3.weight": "model-00018-of-00019.safetensors",
|
711 |
+
"model.layers.29.block_sparse_moe.experts.7.w1.weight": "model-00018-of-00019.safetensors",
|
712 |
+
"model.layers.29.block_sparse_moe.experts.7.w2.weight": "model-00018-of-00019.safetensors",
|
713 |
+
"model.layers.29.block_sparse_moe.experts.7.w3.weight": "model-00018-of-00019.safetensors",
|
714 |
+
"model.layers.29.block_sparse_moe.gate.weight": "model-00018-of-00019.safetensors",
|
715 |
+
"model.layers.29.input_layernorm.weight": "model-00018-of-00019.safetensors",
|
716 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
|
717 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
|
718 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
|
719 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
|
720 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
|
721 |
+
"model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00019.safetensors",
|
722 |
+
"model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00019.safetensors",
|
723 |
+
"model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00019.safetensors",
|
724 |
+
"model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00019.safetensors",
|
725 |
+
"model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00019.safetensors",
|
726 |
+
"model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00019.safetensors",
|
727 |
+
"model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00019.safetensors",
|
728 |
+
"model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00019.safetensors",
|
729 |
+
"model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00019.safetensors",
|
730 |
+
"model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00019.safetensors",
|
731 |
+
"model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00019.safetensors",
|
732 |
+
"model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00019.safetensors",
|
733 |
+
"model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00019.safetensors",
|
734 |
+
"model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00019.safetensors",
|
735 |
+
"model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00019.safetensors",
|
736 |
+
"model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00019.safetensors",
|
737 |
+
"model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00019.safetensors",
|
738 |
+
"model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00019.safetensors",
|
739 |
+
"model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00019.safetensors",
|
740 |
+
"model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00019.safetensors",
|
741 |
+
"model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00019.safetensors",
|
742 |
+
"model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00019.safetensors",
|
743 |
+
"model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00019.safetensors",
|
744 |
+
"model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00019.safetensors",
|
745 |
+
"model.layers.3.block_sparse_moe.gate.weight": "model-00002-of-00019.safetensors",
|
746 |
+
"model.layers.3.input_layernorm.weight": "model-00003-of-00019.safetensors",
|
747 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
|
748 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00019.safetensors",
|
749 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
|
750 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00019.safetensors",
|
751 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00019.safetensors",
|
752 |
+
"model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00018-of-00019.safetensors",
|
753 |
+
"model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00018-of-00019.safetensors",
|
754 |
+
"model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00018-of-00019.safetensors",
|
755 |
+
"model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00018-of-00019.safetensors",
|
756 |
+
"model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00018-of-00019.safetensors",
|
757 |
+
"model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00018-of-00019.safetensors",
|
758 |
+
"model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00018-of-00019.safetensors",
|
759 |
+
"model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00018-of-00019.safetensors",
|
760 |
+
"model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00018-of-00019.safetensors",
|
761 |
+
"model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00018-of-00019.safetensors",
|
762 |
+
"model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00018-of-00019.safetensors",
|
763 |
+
"model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00018-of-00019.safetensors",
|
764 |
+
"model.layers.30.block_sparse_moe.experts.4.w1.weight": "model-00018-of-00019.safetensors",
|
765 |
+
"model.layers.30.block_sparse_moe.experts.4.w2.weight": "model-00018-of-00019.safetensors",
|
766 |
+
"model.layers.30.block_sparse_moe.experts.4.w3.weight": "model-00018-of-00019.safetensors",
|
767 |
+
"model.layers.30.block_sparse_moe.experts.5.w1.weight": "model-00019-of-00019.safetensors",
|
768 |
+
"model.layers.30.block_sparse_moe.experts.5.w2.weight": "model-00019-of-00019.safetensors",
|
769 |
+
"model.layers.30.block_sparse_moe.experts.5.w3.weight": "model-00019-of-00019.safetensors",
|
770 |
+
"model.layers.30.block_sparse_moe.experts.6.w1.weight": "model-00019-of-00019.safetensors",
|
771 |
+
"model.layers.30.block_sparse_moe.experts.6.w2.weight": "model-00019-of-00019.safetensors",
|
772 |
+
"model.layers.30.block_sparse_moe.experts.6.w3.weight": "model-00019-of-00019.safetensors",
|
773 |
+
"model.layers.30.block_sparse_moe.experts.7.w1.weight": "model-00019-of-00019.safetensors",
|
774 |
+
"model.layers.30.block_sparse_moe.experts.7.w2.weight": "model-00019-of-00019.safetensors",
|
775 |
+
"model.layers.30.block_sparse_moe.experts.7.w3.weight": "model-00019-of-00019.safetensors",
|
776 |
+
"model.layers.30.block_sparse_moe.gate.weight": "model-00018-of-00019.safetensors",
|
777 |
+
"model.layers.30.input_layernorm.weight": "model-00019-of-00019.safetensors",
|
778 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
|
779 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
|
780 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
|
781 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
|
782 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
|
783 |
+
"model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00019-of-00019.safetensors",
|
784 |
+
"model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00019-of-00019.safetensors",
|
785 |
+
"model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00019-of-00019.safetensors",
|
786 |
+
"model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00019-of-00019.safetensors",
|
787 |
+
"model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00019-of-00019.safetensors",
|
788 |
+
"model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00019-of-00019.safetensors",
|
789 |
+
"model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00019-of-00019.safetensors",
|
790 |
+
"model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00019-of-00019.safetensors",
|
791 |
+
"model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00019-of-00019.safetensors",
|
792 |
+
"model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00019-of-00019.safetensors",
|
793 |
+
"model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00019-of-00019.safetensors",
|
794 |
+
"model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00019-of-00019.safetensors",
|
795 |
+
"model.layers.31.block_sparse_moe.experts.4.w1.weight": "model-00019-of-00019.safetensors",
|
796 |
+
"model.layers.31.block_sparse_moe.experts.4.w2.weight": "model-00019-of-00019.safetensors",
|
797 |
+
"model.layers.31.block_sparse_moe.experts.4.w3.weight": "model-00019-of-00019.safetensors",
|
798 |
+
"model.layers.31.block_sparse_moe.experts.5.w1.weight": "model-00019-of-00019.safetensors",
|
799 |
+
"model.layers.31.block_sparse_moe.experts.5.w2.weight": "model-00019-of-00019.safetensors",
|
800 |
+
"model.layers.31.block_sparse_moe.experts.5.w3.weight": "model-00019-of-00019.safetensors",
|
801 |
+
"model.layers.31.block_sparse_moe.experts.6.w1.weight": "model-00019-of-00019.safetensors",
|
802 |
+
"model.layers.31.block_sparse_moe.experts.6.w2.weight": "model-00019-of-00019.safetensors",
|
803 |
+
"model.layers.31.block_sparse_moe.experts.6.w3.weight": "model-00019-of-00019.safetensors",
|
804 |
+
"model.layers.31.block_sparse_moe.experts.7.w1.weight": "model-00019-of-00019.safetensors",
|
805 |
+
"model.layers.31.block_sparse_moe.experts.7.w2.weight": "model-00019-of-00019.safetensors",
|
806 |
+
"model.layers.31.block_sparse_moe.experts.7.w3.weight": "model-00019-of-00019.safetensors",
|
807 |
+
"model.layers.31.block_sparse_moe.gate.weight": "model-00019-of-00019.safetensors",
|
808 |
+
"model.layers.31.input_layernorm.weight": "model-00019-of-00019.safetensors",
|
809 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
|
810 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00019-of-00019.safetensors",
|
811 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00019-of-00019.safetensors",
|
812 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00019-of-00019.safetensors",
|
813 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00019-of-00019.safetensors",
|
814 |
+
"model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00019.safetensors",
|
815 |
+
"model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00019.safetensors",
|
816 |
+
"model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00019.safetensors",
|
817 |
+
"model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00019.safetensors",
|
818 |
+
"model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00019.safetensors",
|
819 |
+
"model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00019.safetensors",
|
820 |
+
"model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00019.safetensors",
|
821 |
+
"model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00019.safetensors",
|
822 |
+
"model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00019.safetensors",
|
823 |
+
"model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00019.safetensors",
|
824 |
+
"model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00019.safetensors",
|
825 |
+
"model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00019.safetensors",
|
826 |
+
"model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00019.safetensors",
|
827 |
+
"model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00019.safetensors",
|
828 |
+
"model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00019.safetensors",
|
829 |
+
"model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00019.safetensors",
|
830 |
+
"model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00019.safetensors",
|
831 |
+
"model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00019.safetensors",
|
832 |
+
"model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00019.safetensors",
|
833 |
+
"model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00019.safetensors",
|
834 |
+
"model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00019.safetensors",
|
835 |
+
"model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00019.safetensors",
|
836 |
+
"model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00019.safetensors",
|
837 |
+
"model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00019.safetensors",
|
838 |
+
"model.layers.4.block_sparse_moe.gate.weight": "model-00003-of-00019.safetensors",
|
839 |
+
"model.layers.4.input_layernorm.weight": "model-00003-of-00019.safetensors",
|
840 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
|
841 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
|
842 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
|
843 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
|
844 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
|
845 |
+
"model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00019.safetensors",
|
846 |
+
"model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00019.safetensors",
|
847 |
+
"model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00019.safetensors",
|
848 |
+
"model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00019.safetensors",
|
849 |
+
"model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00019.safetensors",
|
850 |
+
"model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00019.safetensors",
|
851 |
+
"model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00019.safetensors",
|
852 |
+
"model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00019.safetensors",
|
853 |
+
"model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00019.safetensors",
|
854 |
+
"model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00019.safetensors",
|
855 |
+
"model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00019.safetensors",
|
856 |
+
"model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00019.safetensors",
|
857 |
+
"model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00019.safetensors",
|
858 |
+
"model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00019.safetensors",
|
859 |
+
"model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00019.safetensors",
|
860 |
+
"model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00019.safetensors",
|
861 |
+
"model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00019.safetensors",
|
862 |
+
"model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00019.safetensors",
|
863 |
+
"model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00019.safetensors",
|
864 |
+
"model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00019.safetensors",
|
865 |
+
"model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00019.safetensors",
|
866 |
+
"model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00019.safetensors",
|
867 |
+
"model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00019.safetensors",
|
868 |
+
"model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00019.safetensors",
|
869 |
+
"model.layers.5.block_sparse_moe.gate.weight": "model-00003-of-00019.safetensors",
|
870 |
+
"model.layers.5.input_layernorm.weight": "model-00004-of-00019.safetensors",
|
871 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00004-of-00019.safetensors",
|
872 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
|
873 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
|
874 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
|
875 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
|
876 |
+
"model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00019.safetensors",
|
877 |
+
"model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00019.safetensors",
|
878 |
+
"model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00019.safetensors",
|
879 |
+
"model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00019.safetensors",
|
880 |
+
"model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00019.safetensors",
|
881 |
+
"model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00019.safetensors",
|
882 |
+
"model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00019.safetensors",
|
883 |
+
"model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00019.safetensors",
|
884 |
+
"model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00019.safetensors",
|
885 |
+
"model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00019.safetensors",
|
886 |
+
"model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00019.safetensors",
|
887 |
+
"model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00019.safetensors",
|
888 |
+
"model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00019.safetensors",
|
889 |
+
"model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00019.safetensors",
|
890 |
+
"model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00019.safetensors",
|
891 |
+
"model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00019.safetensors",
|
892 |
+
"model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00019.safetensors",
|
893 |
+
"model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00019.safetensors",
|
894 |
+
"model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00019.safetensors",
|
895 |
+
"model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00019.safetensors",
|
896 |
+
"model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00019.safetensors",
|
897 |
+
"model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00019.safetensors",
|
898 |
+
"model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00019.safetensors",
|
899 |
+
"model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00019.safetensors",
|
900 |
+
"model.layers.6.block_sparse_moe.gate.weight": "model-00004-of-00019.safetensors",
|
901 |
+
"model.layers.6.input_layernorm.weight": "model-00005-of-00019.safetensors",
|
902 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00005-of-00019.safetensors",
|
903 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00004-of-00019.safetensors",
|
904 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00004-of-00019.safetensors",
|
905 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00004-of-00019.safetensors",
|
906 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00004-of-00019.safetensors",
|
907 |
+
"model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00019.safetensors",
|
908 |
+
"model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00019.safetensors",
|
909 |
+
"model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00019.safetensors",
|
910 |
+
"model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00019.safetensors",
|
911 |
+
"model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00019.safetensors",
|
912 |
+
"model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00019.safetensors",
|
913 |
+
"model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00019.safetensors",
|
914 |
+
"model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00019.safetensors",
|
915 |
+
"model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00019.safetensors",
|
916 |
+
"model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00019.safetensors",
|
917 |
+
"model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00019.safetensors",
|
918 |
+
"model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00019.safetensors",
|
919 |
+
"model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00019.safetensors",
|
920 |
+
"model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00019.safetensors",
|
921 |
+
"model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00019.safetensors",
|
922 |
+
"model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00019.safetensors",
|
923 |
+
"model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00019.safetensors",
|
924 |
+
"model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00019.safetensors",
|
925 |
+
"model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00019.safetensors",
|
926 |
+
"model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00019.safetensors",
|
927 |
+
"model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00019.safetensors",
|
928 |
+
"model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00019.safetensors",
|
929 |
+
"model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00019.safetensors",
|
930 |
+
"model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00019.safetensors",
|
931 |
+
"model.layers.7.block_sparse_moe.gate.weight": "model-00005-of-00019.safetensors",
|
932 |
+
"model.layers.7.input_layernorm.weight": "model-00005-of-00019.safetensors",
|
933 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00005-of-00019.safetensors",
|
934 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00005-of-00019.safetensors",
|
935 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00005-of-00019.safetensors",
|
936 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00005-of-00019.safetensors",
|
937 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00005-of-00019.safetensors",
|
938 |
+
"model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00019.safetensors",
|
939 |
+
"model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00019.safetensors",
|
940 |
+
"model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00019.safetensors",
|
941 |
+
"model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00019.safetensors",
|
942 |
+
"model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00019.safetensors",
|
943 |
+
"model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00019.safetensors",
|
944 |
+
"model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00019.safetensors",
|
945 |
+
"model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00019.safetensors",
|
946 |
+
"model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00019.safetensors",
|
947 |
+
"model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00019.safetensors",
|
948 |
+
"model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00019.safetensors",
|
949 |
+
"model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00019.safetensors",
|
950 |
+
"model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00019.safetensors",
|
951 |
+
"model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00019.safetensors",
|
952 |
+
"model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00019.safetensors",
|
953 |
+
"model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00019.safetensors",
|
954 |
+
"model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00019.safetensors",
|
955 |
+
"model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00019.safetensors",
|
956 |
+
"model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00019.safetensors",
|
957 |
+
"model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00019.safetensors",
|
958 |
+
"model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00019.safetensors",
|
959 |
+
"model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00019.safetensors",
|
960 |
+
"model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00019.safetensors",
|
961 |
+
"model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00019.safetensors",
|
962 |
+
"model.layers.8.block_sparse_moe.gate.weight": "model-00005-of-00019.safetensors",
|
963 |
+
"model.layers.8.input_layernorm.weight": "model-00006-of-00019.safetensors",
|
964 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
|
965 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00005-of-00019.safetensors",
|
966 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00005-of-00019.safetensors",
|
967 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00005-of-00019.safetensors",
|
968 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00005-of-00019.safetensors",
|
969 |
+
"model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00019.safetensors",
|
970 |
+
"model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00019.safetensors",
|
971 |
+
"model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00019.safetensors",
|
972 |
+
"model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00006-of-00019.safetensors",
|
973 |
+
"model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00006-of-00019.safetensors",
|
974 |
+
"model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00006-of-00019.safetensors",
|
975 |
+
"model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00019.safetensors",
|
976 |
+
"model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00019.safetensors",
|
977 |
+
"model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00019.safetensors",
|
978 |
+
"model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00019.safetensors",
|
979 |
+
"model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00019.safetensors",
|
980 |
+
"model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00019.safetensors",
|
981 |
+
"model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00019.safetensors",
|
982 |
+
"model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00019.safetensors",
|
983 |
+
"model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00019.safetensors",
|
984 |
+
"model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00019.safetensors",
|
985 |
+
"model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00019.safetensors",
|
986 |
+
"model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00019.safetensors",
|
987 |
+
"model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00019.safetensors",
|
988 |
+
"model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00019.safetensors",
|
989 |
+
"model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00019.safetensors",
|
990 |
+
"model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00019.safetensors",
|
991 |
+
"model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00019.safetensors",
|
992 |
+
"model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00019.safetensors",
|
993 |
+
"model.layers.9.block_sparse_moe.gate.weight": "model-00006-of-00019.safetensors",
|
994 |
+
"model.layers.9.input_layernorm.weight": "model-00006-of-00019.safetensors",
|
995 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
|
996 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
|
997 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
|
998 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
|
999 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
|
1000 |
+
"model.norm.weight": "model-00019-of-00019.safetensors"
|
1001 |
+
}
|
1002 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca5e705a9a66fbc01c34e7339db996f6731ed2a7dc31bd0c1e6b19d6e17af1ab
|
3 |
+
size 21687
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1a0d959f23f9f0158eb1d44e44c6bf62894002d1bfa7cad7385ce372d200b15
|
3 |
+
size 21687
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15c1761b8de4b39281c07f40e2d1ce78e3d7df5e35370d9a469619997acbe862
|
3 |
+
size 21687
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e0612fbe20daffa545b62838e3ecc57e97d9bbbd7b890e1c57d484454344025
|
3 |
+
size 21687
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b3418a7398e8a98bfd38ea9f17edf3056fc164002155b10915188e9bdb34449
|
3 |
+
size 21687
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:775a14f5dba01471f4243fd970fd5366fdd9e1d43f4ee968e488e04ff797ff49
|
3 |
+
size 21687
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3fdf21cfe8e920e81208cc45a06b47220696a6ea352b23556fb49fba96a5e08
|
3 |
+
size 21687
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34422bceedd7681bfe4a3aba447fb3e965fec76d666a59c00e41a64ab1ae385b
|
3 |
+
size 21687
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b787bd9799498ca4e5c2bff10ce671a7516fb184c16b110bdf435e1796faa706
|
3 |
+
size 627
|
special_tokens_map.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|content|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|recipient|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "<|from|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"content": "<|stop|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"bos_token": {
|
33 |
+
"content": "<s>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
"eos_token": {
|
40 |
+
"content": "</s>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
},
|
46 |
+
"pad_token": "</s>",
|
47 |
+
"unk_token": {
|
48 |
+
"content": "<unk>",
|
49 |
+
"lstrip": false,
|
50 |
+
"normalized": false,
|
51 |
+
"rstrip": false,
|
52 |
+
"single_word": false
|
53 |
+
}
|
54 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|content|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|recipient|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|from|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|stop|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"additional_special_tokens": [
|
63 |
+
"<|content|>",
|
64 |
+
"<|recipient|>",
|
65 |
+
"<|from|>",
|
66 |
+
"<|stop|>"
|
67 |
+
],
|
68 |
+
"bos_token": "<s>",
|
69 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' or message['role'] == 'system' %}\n{{ '<|from|>' + message['role'] + '\n<|recipient|>all\n<|content|>' + message['content'] + '\n' }}{% elif message['role'] == 'tool' %}\n{{ '<|from|>' + message['name'] + '\n<|recipient|>all\n<|content|>' + message['content'] + '\n' }}{% else %}\n{% set contain_content='no'%}\n{% if message['content'] is not none %}\n{{ '<|from|>assistant\n<|recipient|>all\n<|content|>' + message['content'] }}{% set contain_content='yes'%}\n{% endif %}\n{% if 'tool_calls' in message and message['tool_calls'] is not none %}\n{% for tool_call in message['tool_calls'] %}\n{% set prompt='<|from|>assistant\n<|recipient|>' + tool_call['function']['name'] + '\n<|content|>' + tool_call['function']['arguments'] %}\n{% if loop.index == 1 and contain_content == \"no\" %}\n{{ prompt }}{% else %}\n{{ '\n' + prompt}}{% endif %}\n{% endfor %}\n{% endif %}\n{{ '<|stop|>\n' }}{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}{{ '<|from|>assistant\n<|recipient|>' }}{% endif %}",
|
70 |
+
"clean_up_tokenization_spaces": false,
|
71 |
+
"eos_token": "</s>",
|
72 |
+
"legacy": true,
|
73 |
+
"model_max_length": 8192,
|
74 |
+
"pad_token": "</s>",
|
75 |
+
"padding_side": "right",
|
76 |
+
"sp_model_kwargs": {},
|
77 |
+
"spaces_between_special_tokens": false,
|
78 |
+
"tokenizer_class": "LlamaTokenizer",
|
79 |
+
"unk_token": "<unk>",
|
80 |
+
"use_default_system_prompt": false
|
81 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.998719590268886,
|
5 |
+
"eval_steps": 75,
|
6 |
+
"global_step": 390,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 8.333333333333333e-07,
|
14 |
+
"loss": 2.0203,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 1.6666666666666667e-06,
|
20 |
+
"loss": 2.1077,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.5e-06,
|
26 |
+
"loss": 1.6828,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 3.3333333333333333e-06,
|
32 |
+
"loss": 1.7609,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.01,
|
37 |
+
"learning_rate": 4.166666666666667e-06,
|
38 |
+
"loss": 1.8274,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.02,
|
43 |
+
"learning_rate": 5e-06,
|
44 |
+
"loss": 1.7816,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02,
|
49 |
+
"learning_rate": 5.833333333333334e-06,
|
50 |
+
"loss": 1.592,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.02,
|
55 |
+
"learning_rate": 6.666666666666667e-06,
|
56 |
+
"loss": 1.4271,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.02,
|
61 |
+
"learning_rate": 7.500000000000001e-06,
|
62 |
+
"loss": 1.4018,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.03,
|
67 |
+
"learning_rate": 8.333333333333334e-06,
|
68 |
+
"loss": 1.1137,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.03,
|
73 |
+
"learning_rate": 9.166666666666666e-06,
|
74 |
+
"loss": 1.2774,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.03,
|
79 |
+
"learning_rate": 1e-05,
|
80 |
+
"loss": 1.1152,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.03,
|
85 |
+
"learning_rate": 9.999827315381885e-06,
|
86 |
+
"loss": 1.1456,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.04,
|
91 |
+
"learning_rate": 9.99930927345553e-06,
|
92 |
+
"loss": 1.0368,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.04,
|
97 |
+
"learning_rate": 9.998445910004082e-06,
|
98 |
+
"loss": 1.0394,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.04,
|
103 |
+
"learning_rate": 9.99723728466338e-06,
|
104 |
+
"loss": 1.0852,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.04,
|
109 |
+
"learning_rate": 9.995683480917821e-06,
|
110 |
+
"loss": 1.0978,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.05,
|
115 |
+
"learning_rate": 9.993784606094612e-06,
|
116 |
+
"loss": 1.0971,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.05,
|
121 |
+
"learning_rate": 9.991540791356342e-06,
|
122 |
+
"loss": 0.8742,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.05,
|
127 |
+
"learning_rate": 9.988952191691925e-06,
|
128 |
+
"loss": 1.0309,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.05,
|
133 |
+
"learning_rate": 9.986018985905901e-06,
|
134 |
+
"loss": 0.9933,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.06,
|
139 |
+
"learning_rate": 9.982741376606077e-06,
|
140 |
+
"loss": 1.0179,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.06,
|
145 |
+
"learning_rate": 9.97911959018954e-06,
|
146 |
+
"loss": 0.9589,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.06,
|
151 |
+
"learning_rate": 9.975153876827008e-06,
|
152 |
+
"loss": 0.9256,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.06,
|
157 |
+
"learning_rate": 9.97084451044556e-06,
|
158 |
+
"loss": 0.9052,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.07,
|
163 |
+
"learning_rate": 9.966191788709716e-06,
|
164 |
+
"loss": 0.7886,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.07,
|
169 |
+
"learning_rate": 9.961196033000862e-06,
|
170 |
+
"loss": 0.8052,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.07,
|
175 |
+
"learning_rate": 9.955857588395065e-06,
|
176 |
+
"loss": 0.8644,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.07,
|
181 |
+
"learning_rate": 9.950176823639233e-06,
|
182 |
+
"loss": 0.943,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.08,
|
187 |
+
"learning_rate": 9.944154131125643e-06,
|
188 |
+
"loss": 0.8096,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.08,
|
193 |
+
"learning_rate": 9.937789926864838e-06,
|
194 |
+
"loss": 0.8375,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.08,
|
199 |
+
"learning_rate": 9.931084650456892e-06,
|
200 |
+
"loss": 0.9596,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.08,
|
205 |
+
"learning_rate": 9.924038765061042e-06,
|
206 |
+
"loss": 0.8191,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.09,
|
211 |
+
"learning_rate": 9.916652757363698e-06,
|
212 |
+
"loss": 0.6918,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.09,
|
217 |
+
"learning_rate": 9.90892713754483e-06,
|
218 |
+
"loss": 0.8118,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.09,
|
223 |
+
"learning_rate": 9.900862439242719e-06,
|
224 |
+
"loss": 0.8023,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.09,
|
229 |
+
"learning_rate": 9.892459219517108e-06,
|
230 |
+
"loss": 0.8091,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.1,
|
235 |
+
"learning_rate": 9.883718058810708e-06,
|
236 |
+
"loss": 0.7172,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.1,
|
241 |
+
"learning_rate": 9.874639560909118e-06,
|
242 |
+
"loss": 0.8353,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.1,
|
247 |
+
"learning_rate": 9.86522435289912e-06,
|
248 |
+
"loss": 0.8134,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.1,
|
253 |
+
"learning_rate": 9.855473085125351e-06,
|
254 |
+
"loss": 0.8074,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.11,
|
259 |
+
"learning_rate": 9.84538643114539e-06,
|
260 |
+
"loss": 0.6778,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.11,
|
265 |
+
"learning_rate": 9.834965087683237e-06,
|
266 |
+
"loss": 0.8074,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.11,
|
271 |
+
"learning_rate": 9.824209774581176e-06,
|
272 |
+
"loss": 0.6441,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.12,
|
277 |
+
"learning_rate": 9.81312123475006e-06,
|
278 |
+
"loss": 0.6854,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.12,
|
283 |
+
"learning_rate": 9.801700234118e-06,
|
284 |
+
"loss": 0.7312,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.12,
|
289 |
+
"learning_rate": 9.789947561577445e-06,
|
290 |
+
"loss": 0.6815,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.12,
|
295 |
+
"learning_rate": 9.777864028930705e-06,
|
296 |
+
"loss": 0.6503,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.13,
|
301 |
+
"learning_rate": 9.765450470833867e-06,
|
302 |
+
"loss": 0.6441,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.13,
|
307 |
+
"learning_rate": 9.752707744739146e-06,
|
308 |
+
"loss": 0.7132,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.13,
|
313 |
+
"learning_rate": 9.73963673083566e-06,
|
314 |
+
"loss": 0.6414,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.13,
|
319 |
+
"learning_rate": 9.726238331988625e-06,
|
320 |
+
"loss": 0.6329,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.14,
|
325 |
+
"learning_rate": 9.712513473676997e-06,
|
326 |
+
"loss": 0.7038,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.14,
|
331 |
+
"learning_rate": 9.698463103929542e-06,
|
332 |
+
"loss": 0.7058,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.14,
|
337 |
+
"learning_rate": 9.684088193259356e-06,
|
338 |
+
"loss": 0.7323,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.14,
|
343 |
+
"learning_rate": 9.669389734596819e-06,
|
344 |
+
"loss": 0.5464,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.15,
|
349 |
+
"learning_rate": 9.654368743221022e-06,
|
350 |
+
"loss": 0.5878,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.15,
|
355 |
+
"learning_rate": 9.639026256689628e-06,
|
356 |
+
"loss": 0.4955,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.15,
|
361 |
+
"learning_rate": 9.623363334767208e-06,
|
362 |
+
"loss": 0.5786,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.15,
|
367 |
+
"learning_rate": 9.60738105935204e-06,
|
368 |
+
"loss": 0.526,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.16,
|
373 |
+
"learning_rate": 9.591080534401371e-06,
|
374 |
+
"loss": 0.5261,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.16,
|
379 |
+
"learning_rate": 9.574462885855173e-06,
|
380 |
+
"loss": 0.6276,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.16,
|
385 |
+
"learning_rate": 9.557529261558367e-06,
|
386 |
+
"loss": 0.585,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.16,
|
391 |
+
"learning_rate": 9.540280831181525e-06,
|
392 |
+
"loss": 0.651,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.17,
|
397 |
+
"learning_rate": 9.522718786140096e-06,
|
398 |
+
"loss": 0.4835,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.17,
|
403 |
+
"learning_rate": 9.504844339512096e-06,
|
404 |
+
"loss": 0.5757,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.17,
|
409 |
+
"learning_rate": 9.486658725954321e-06,
|
410 |
+
"loss": 0.6357,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.17,
|
415 |
+
"learning_rate": 9.468163201617063e-06,
|
416 |
+
"loss": 0.6052,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.18,
|
421 |
+
"learning_rate": 9.449359044057344e-06,
|
422 |
+
"loss": 0.6328,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.18,
|
427 |
+
"learning_rate": 9.430247552150673e-06,
|
428 |
+
"loss": 0.4931,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.18,
|
433 |
+
"learning_rate": 9.410830046001321e-06,
|
434 |
+
"loss": 0.5083,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.18,
|
439 |
+
"learning_rate": 9.391107866851143e-06,
|
440 |
+
"loss": 0.5612,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.19,
|
445 |
+
"learning_rate": 9.37108237698693e-06,
|
446 |
+
"loss": 0.5848,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.19,
|
451 |
+
"learning_rate": 9.350754959646306e-06,
|
452 |
+
"loss": 0.5098,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.19,
|
457 |
+
"learning_rate": 9.330127018922195e-06,
|
458 |
+
"loss": 0.6561,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.19,
|
463 |
+
"eval_accuracy": 0.8096002455644081,
|
464 |
+
"eval_accuracy_<|content|>": 0.9054457292055204,
|
465 |
+
"eval_accuracy_<|from|>": 0.9848293299620733,
|
466 |
+
"eval_accuracy_<|recipient|>": 0.5600505689001264,
|
467 |
+
"eval_accuracy_<|stop|>": 0.9188891337888473,
|
468 |
+
"eval_accuracy_total_num_<|content|>": 5362,
|
469 |
+
"eval_accuracy_total_num_<|from|>": 791,
|
470 |
+
"eval_accuracy_total_num_<|recipient|>": 791,
|
471 |
+
"eval_accuracy_total_num_<|stop|>": 4537,
|
472 |
+
"eval_loss": NaN,
|
473 |
+
"eval_perplexity": 1.0685622608271412,
|
474 |
+
"eval_runtime": 368.5003,
|
475 |
+
"eval_samples_per_second": 3.731,
|
476 |
+
"eval_steps_per_second": 0.467,
|
477 |
+
"step": 75
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.19,
|
481 |
+
"learning_rate": 9.309199979665821e-06,
|
482 |
+
"loss": 0.5904,
|
483 |
+
"step": 76
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.2,
|
487 |
+
"learning_rate": 9.287975287388297e-06,
|
488 |
+
"loss": 0.5897,
|
489 |
+
"step": 77
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.2,
|
493 |
+
"learning_rate": 9.266454408160779e-06,
|
494 |
+
"loss": 0.5341,
|
495 |
+
"step": 78
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.2,
|
499 |
+
"learning_rate": 9.244638828513189e-06,
|
500 |
+
"loss": 0.5282,
|
501 |
+
"step": 79
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.2,
|
505 |
+
"learning_rate": 9.22253005533154e-06,
|
506 |
+
"loss": 0.4889,
|
507 |
+
"step": 80
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.21,
|
511 |
+
"learning_rate": 9.200129615753858e-06,
|
512 |
+
"loss": 0.6347,
|
513 |
+
"step": 81
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.21,
|
517 |
+
"learning_rate": 9.177439057064684e-06,
|
518 |
+
"loss": 0.5477,
|
519 |
+
"step": 82
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.21,
|
523 |
+
"learning_rate": 9.154459946588199e-06,
|
524 |
+
"loss": 0.5674,
|
525 |
+
"step": 83
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.22,
|
529 |
+
"learning_rate": 9.131193871579975e-06,
|
530 |
+
"loss": 0.5769,
|
531 |
+
"step": 84
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.22,
|
535 |
+
"learning_rate": 9.107642439117322e-06,
|
536 |
+
"loss": 0.4182,
|
537 |
+
"step": 85
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.22,
|
541 |
+
"learning_rate": 9.083807275988285e-06,
|
542 |
+
"loss": 0.6244,
|
543 |
+
"step": 86
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.22,
|
547 |
+
"learning_rate": 9.059690028579285e-06,
|
548 |
+
"loss": 0.4599,
|
549 |
+
"step": 87
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.23,
|
553 |
+
"learning_rate": 9.035292362761382e-06,
|
554 |
+
"loss": 0.5209,
|
555 |
+
"step": 88
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.23,
|
559 |
+
"learning_rate": 9.01061596377522e-06,
|
560 |
+
"loss": 0.5992,
|
561 |
+
"step": 89
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.23,
|
565 |
+
"learning_rate": 8.985662536114614e-06,
|
566 |
+
"loss": 0.5819,
|
567 |
+
"step": 90
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.23,
|
571 |
+
"learning_rate": 8.960433803408813e-06,
|
572 |
+
"loss": 0.5248,
|
573 |
+
"step": 91
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.24,
|
577 |
+
"learning_rate": 8.934931508303446e-06,
|
578 |
+
"loss": 0.497,
|
579 |
+
"step": 92
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.24,
|
583 |
+
"learning_rate": 8.90915741234015e-06,
|
584 |
+
"loss": 0.4701,
|
585 |
+
"step": 93
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.24,
|
589 |
+
"learning_rate": 8.883113295834893e-06,
|
590 |
+
"loss": 0.4594,
|
591 |
+
"step": 94
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.24,
|
595 |
+
"learning_rate": 8.856800957755e-06,
|
596 |
+
"loss": 0.4374,
|
597 |
+
"step": 95
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.25,
|
601 |
+
"learning_rate": 8.83022221559489e-06,
|
602 |
+
"loss": 0.53,
|
603 |
+
"step": 96
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.25,
|
607 |
+
"learning_rate": 8.803378905250544e-06,
|
608 |
+
"loss": 0.4277,
|
609 |
+
"step": 97
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.25,
|
613 |
+
"learning_rate": 8.776272880892675e-06,
|
614 |
+
"loss": 0.4828,
|
615 |
+
"step": 98
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.25,
|
619 |
+
"learning_rate": 8.748906014838672e-06,
|
620 |
+
"loss": 0.5068,
|
621 |
+
"step": 99
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.26,
|
625 |
+
"learning_rate": 8.721280197423259e-06,
|
626 |
+
"loss": 0.462,
|
627 |
+
"step": 100
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.26,
|
631 |
+
"learning_rate": 8.69339733686793e-06,
|
632 |
+
"loss": 0.4336,
|
633 |
+
"step": 101
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.26,
|
637 |
+
"learning_rate": 8.665259359149132e-06,
|
638 |
+
"loss": 0.4928,
|
639 |
+
"step": 102
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.26,
|
643 |
+
"learning_rate": 8.636868207865244e-06,
|
644 |
+
"loss": 0.5075,
|
645 |
+
"step": 103
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.27,
|
649 |
+
"learning_rate": 8.608225844102312e-06,
|
650 |
+
"loss": 0.5317,
|
651 |
+
"step": 104
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.27,
|
655 |
+
"learning_rate": 8.579334246298593e-06,
|
656 |
+
"loss": 0.5727,
|
657 |
+
"step": 105
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.27,
|
661 |
+
"learning_rate": 8.550195410107903e-06,
|
662 |
+
"loss": 0.5007,
|
663 |
+
"step": 106
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.27,
|
667 |
+
"learning_rate": 8.52081134826176e-06,
|
668 |
+
"loss": 0.5853,
|
669 |
+
"step": 107
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.28,
|
673 |
+
"learning_rate": 8.491184090430365e-06,
|
674 |
+
"loss": 0.5461,
|
675 |
+
"step": 108
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.28,
|
679 |
+
"learning_rate": 8.461315683082398e-06,
|
680 |
+
"loss": 0.5821,
|
681 |
+
"step": 109
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.28,
|
685 |
+
"learning_rate": 8.43120818934367e-06,
|
686 |
+
"loss": 0.5009,
|
687 |
+
"step": 110
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.28,
|
691 |
+
"learning_rate": 8.400863688854598e-06,
|
692 |
+
"loss": 0.4381,
|
693 |
+
"step": 111
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.29,
|
697 |
+
"learning_rate": 8.370284277626576e-06,
|
698 |
+
"loss": 0.4998,
|
699 |
+
"step": 112
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.29,
|
703 |
+
"learning_rate": 8.339472067897187e-06,
|
704 |
+
"loss": 0.554,
|
705 |
+
"step": 113
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.29,
|
709 |
+
"learning_rate": 8.308429187984298e-06,
|
710 |
+
"loss": 0.4264,
|
711 |
+
"step": 114
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.29,
|
715 |
+
"learning_rate": 8.277157782139051e-06,
|
716 |
+
"loss": 0.4692,
|
717 |
+
"step": 115
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.3,
|
721 |
+
"learning_rate": 8.24566001039776e-06,
|
722 |
+
"loss": 0.5083,
|
723 |
+
"step": 116
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.3,
|
727 |
+
"learning_rate": 8.213938048432697e-06,
|
728 |
+
"loss": 0.5876,
|
729 |
+
"step": 117
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.3,
|
733 |
+
"learning_rate": 8.181994087401819e-06,
|
734 |
+
"loss": 0.4498,
|
735 |
+
"step": 118
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.3,
|
739 |
+
"learning_rate": 8.149830333797407e-06,
|
740 |
+
"loss": 0.5222,
|
741 |
+
"step": 119
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.31,
|
745 |
+
"learning_rate": 8.117449009293668e-06,
|
746 |
+
"loss": 0.5295,
|
747 |
+
"step": 120
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.31,
|
751 |
+
"learning_rate": 8.084852350593264e-06,
|
752 |
+
"loss": 0.492,
|
753 |
+
"step": 121
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.31,
|
757 |
+
"learning_rate": 8.052042609272817e-06,
|
758 |
+
"loss": 0.675,
|
759 |
+
"step": 122
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.31,
|
763 |
+
"learning_rate": 8.019022051627387e-06,
|
764 |
+
"loss": 0.4563,
|
765 |
+
"step": 123
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.32,
|
769 |
+
"learning_rate": 7.985792958513932e-06,
|
770 |
+
"loss": 0.5108,
|
771 |
+
"step": 124
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.32,
|
775 |
+
"learning_rate": 7.952357625193749e-06,
|
776 |
+
"loss": 0.4258,
|
777 |
+
"step": 125
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.32,
|
781 |
+
"learning_rate": 7.918718361173951e-06,
|
782 |
+
"loss": 0.4717,
|
783 |
+
"step": 126
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.33,
|
787 |
+
"learning_rate": 7.884877490047915e-06,
|
788 |
+
"loss": 0.529,
|
789 |
+
"step": 127
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.33,
|
793 |
+
"learning_rate": 7.85083734933481e-06,
|
794 |
+
"loss": 0.4353,
|
795 |
+
"step": 128
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.33,
|
799 |
+
"learning_rate": 7.81660029031811e-06,
|
800 |
+
"loss": 0.512,
|
801 |
+
"step": 129
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.33,
|
805 |
+
"learning_rate": 7.782168677883206e-06,
|
806 |
+
"loss": 0.5723,
|
807 |
+
"step": 130
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.34,
|
811 |
+
"learning_rate": 7.747544890354031e-06,
|
812 |
+
"loss": 0.5354,
|
813 |
+
"step": 131
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.34,
|
817 |
+
"learning_rate": 7.712731319328798e-06,
|
818 |
+
"loss": 0.4359,
|
819 |
+
"step": 132
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.34,
|
823 |
+
"learning_rate": 7.677730369514792e-06,
|
824 |
+
"loss": 0.3552,
|
825 |
+
"step": 133
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.34,
|
829 |
+
"learning_rate": 7.642544458562278e-06,
|
830 |
+
"loss": 0.4758,
|
831 |
+
"step": 134
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.35,
|
835 |
+
"learning_rate": 7.607176016897491e-06,
|
836 |
+
"loss": 0.4783,
|
837 |
+
"step": 135
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.35,
|
841 |
+
"learning_rate": 7.571627487554769e-06,
|
842 |
+
"loss": 0.6152,
|
843 |
+
"step": 136
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.35,
|
847 |
+
"learning_rate": 7.535901326007796e-06,
|
848 |
+
"loss": 0.4984,
|
849 |
+
"step": 137
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.35,
|
853 |
+
"learning_rate": 7.500000000000001e-06,
|
854 |
+
"loss": 0.4241,
|
855 |
+
"step": 138
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.36,
|
859 |
+
"learning_rate": 7.463925989374089e-06,
|
860 |
+
"loss": 0.4422,
|
861 |
+
"step": 139
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.36,
|
865 |
+
"learning_rate": 7.4276817859007615e-06,
|
866 |
+
"loss": 0.475,
|
867 |
+
"step": 140
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.36,
|
871 |
+
"learning_rate": 7.391269893106592e-06,
|
872 |
+
"loss": 0.4778,
|
873 |
+
"step": 141
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.36,
|
877 |
+
"learning_rate": 7.354692826101102e-06,
|
878 |
+
"loss": 0.406,
|
879 |
+
"step": 142
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.37,
|
883 |
+
"learning_rate": 7.317953111403029e-06,
|
884 |
+
"loss": 0.499,
|
885 |
+
"step": 143
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.37,
|
889 |
+
"learning_rate": 7.281053286765816e-06,
|
890 |
+
"loss": 0.6181,
|
891 |
+
"step": 144
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.37,
|
895 |
+
"learning_rate": 7.243995901002312e-06,
|
896 |
+
"loss": 0.6451,
|
897 |
+
"step": 145
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.37,
|
901 |
+
"learning_rate": 7.206783513808721e-06,
|
902 |
+
"loss": 0.4481,
|
903 |
+
"step": 146
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.38,
|
907 |
+
"learning_rate": 7.169418695587791e-06,
|
908 |
+
"loss": 0.4808,
|
909 |
+
"step": 147
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.38,
|
913 |
+
"learning_rate": 7.1319040272712705e-06,
|
914 |
+
"loss": 0.5812,
|
915 |
+
"step": 148
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.38,
|
919 |
+
"learning_rate": 7.094242100141625e-06,
|
920 |
+
"loss": 0.5282,
|
921 |
+
"step": 149
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.38,
|
925 |
+
"learning_rate": 7.056435515653059e-06,
|
926 |
+
"loss": 0.508,
|
927 |
+
"step": 150
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.38,
|
931 |
+
"eval_accuracy": 0.8220327916670906,
|
932 |
+
"eval_accuracy_<|content|>": 0.9985080193957478,
|
933 |
+
"eval_accuracy_<|from|>": 0.97724399494311,
|
934 |
+
"eval_accuracy_<|recipient|>": 1.0,
|
935 |
+
"eval_accuracy_<|stop|>": 0.84174564690324,
|
936 |
+
"eval_accuracy_total_num_<|content|>": 5362,
|
937 |
+
"eval_accuracy_total_num_<|from|>": 791,
|
938 |
+
"eval_accuracy_total_num_<|recipient|>": 791,
|
939 |
+
"eval_accuracy_total_num_<|stop|>": 4537,
|
940 |
+
"eval_loss": NaN,
|
941 |
+
"eval_perplexity": 1.0626254108805258,
|
942 |
+
"eval_runtime": 331.6718,
|
943 |
+
"eval_samples_per_second": 4.146,
|
944 |
+
"eval_steps_per_second": 0.519,
|
945 |
+
"step": 150
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.39,
|
949 |
+
"learning_rate": 7.0184868852518114e-06,
|
950 |
+
"loss": 0.3785,
|
951 |
+
"step": 151
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.39,
|
955 |
+
"learning_rate": 6.980398830195785e-06,
|
956 |
+
"loss": 0.3625,
|
957 |
+
"step": 152
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.39,
|
961 |
+
"learning_rate": 6.942173981373474e-06,
|
962 |
+
"loss": 0.5124,
|
963 |
+
"step": 153
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.39,
|
967 |
+
"learning_rate": 6.903814979122249e-06,
|
968 |
+
"loss": 0.5874,
|
969 |
+
"step": 154
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.4,
|
973 |
+
"learning_rate": 6.86532447304597e-06,
|
974 |
+
"loss": 0.473,
|
975 |
+
"step": 155
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.4,
|
979 |
+
"learning_rate": 6.8267051218319766e-06,
|
980 |
+
"loss": 0.5132,
|
981 |
+
"step": 156
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.4,
|
985 |
+
"learning_rate": 6.787959593067431e-06,
|
986 |
+
"loss": 0.597,
|
987 |
+
"step": 157
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.4,
|
991 |
+
"learning_rate": 6.749090563055075e-06,
|
992 |
+
"loss": 0.4303,
|
993 |
+
"step": 158
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.41,
|
997 |
+
"learning_rate": 6.710100716628345e-06,
|
998 |
+
"loss": 0.5029,
|
999 |
+
"step": 159
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.41,
|
1003 |
+
"learning_rate": 6.6709927469659385e-06,
|
1004 |
+
"loss": 0.5159,
|
1005 |
+
"step": 160
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.41,
|
1009 |
+
"learning_rate": 6.631769355405779e-06,
|
1010 |
+
"loss": 0.4789,
|
1011 |
+
"step": 161
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.41,
|
1015 |
+
"learning_rate": 6.592433251258423e-06,
|
1016 |
+
"loss": 0.4632,
|
1017 |
+
"step": 162
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.42,
|
1021 |
+
"learning_rate": 6.552987151619919e-06,
|
1022 |
+
"loss": 0.5442,
|
1023 |
+
"step": 163
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.42,
|
1027 |
+
"learning_rate": 6.513433781184131e-06,
|
1028 |
+
"loss": 0.4984,
|
1029 |
+
"step": 164
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.42,
|
1033 |
+
"learning_rate": 6.473775872054522e-06,
|
1034 |
+
"loss": 0.4579,
|
1035 |
+
"step": 165
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.43,
|
1039 |
+
"learning_rate": 6.434016163555452e-06,
|
1040 |
+
"loss": 0.434,
|
1041 |
+
"step": 166
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.43,
|
1045 |
+
"learning_rate": 6.394157402042952e-06,
|
1046 |
+
"loss": 0.5519,
|
1047 |
+
"step": 167
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.43,
|
1051 |
+
"learning_rate": 6.354202340715027e-06,
|
1052 |
+
"loss": 0.4145,
|
1053 |
+
"step": 168
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.43,
|
1057 |
+
"learning_rate": 6.314153739421477e-06,
|
1058 |
+
"loss": 0.4358,
|
1059 |
+
"step": 169
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.44,
|
1063 |
+
"learning_rate": 6.274014364473274e-06,
|
1064 |
+
"loss": 0.4972,
|
1065 |
+
"step": 170
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.44,
|
1069 |
+
"learning_rate": 6.233786988451468e-06,
|
1070 |
+
"loss": 0.5023,
|
1071 |
+
"step": 171
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.44,
|
1075 |
+
"learning_rate": 6.19347439001569e-06,
|
1076 |
+
"loss": 0.4899,
|
1077 |
+
"step": 172
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.44,
|
1081 |
+
"learning_rate": 6.153079353712201e-06,
|
1082 |
+
"loss": 0.4607,
|
1083 |
+
"step": 173
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.45,
|
1087 |
+
"learning_rate": 6.112604669781572e-06,
|
1088 |
+
"loss": 0.4166,
|
1089 |
+
"step": 174
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.45,
|
1093 |
+
"learning_rate": 6.0720531339659386e-06,
|
1094 |
+
"loss": 0.4975,
|
1095 |
+
"step": 175
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.45,
|
1099 |
+
"learning_rate": 6.031427547315889e-06,
|
1100 |
+
"loss": 0.4031,
|
1101 |
+
"step": 176
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.45,
|
1105 |
+
"learning_rate": 5.990730715996989e-06,
|
1106 |
+
"loss": 0.5201,
|
1107 |
+
"step": 177
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.46,
|
1111 |
+
"learning_rate": 5.949965451095952e-06,
|
1112 |
+
"loss": 0.4893,
|
1113 |
+
"step": 178
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.46,
|
1117 |
+
"learning_rate": 5.909134568426455e-06,
|
1118 |
+
"loss": 0.61,
|
1119 |
+
"step": 179
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.46,
|
1123 |
+
"learning_rate": 5.8682408883346535e-06,
|
1124 |
+
"loss": 0.4173,
|
1125 |
+
"step": 180
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.46,
|
1129 |
+
"learning_rate": 5.827287235504356e-06,
|
1130 |
+
"loss": 0.4462,
|
1131 |
+
"step": 181
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.47,
|
1135 |
+
"learning_rate": 5.786276438761928e-06,
|
1136 |
+
"loss": 0.53,
|
1137 |
+
"step": 182
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.47,
|
1141 |
+
"learning_rate": 5.745211330880872e-06,
|
1142 |
+
"loss": 0.3297,
|
1143 |
+
"step": 183
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.47,
|
1147 |
+
"learning_rate": 5.7040947483861845e-06,
|
1148 |
+
"loss": 0.466,
|
1149 |
+
"step": 184
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.47,
|
1153 |
+
"learning_rate": 5.6629295313583975e-06,
|
1154 |
+
"loss": 0.5355,
|
1155 |
+
"step": 185
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.48,
|
1159 |
+
"learning_rate": 5.621718523237427e-06,
|
1160 |
+
"loss": 0.4806,
|
1161 |
+
"step": 186
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.48,
|
1165 |
+
"learning_rate": 5.5804645706261515e-06,
|
1166 |
+
"loss": 0.3791,
|
1167 |
+
"step": 187
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.48,
|
1171 |
+
"learning_rate": 5.539170523093794e-06,
|
1172 |
+
"loss": 0.5198,
|
1173 |
+
"step": 188
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.48,
|
1177 |
+
"learning_rate": 5.497839232979084e-06,
|
1178 |
+
"loss": 0.4091,
|
1179 |
+
"step": 189
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.49,
|
1183 |
+
"learning_rate": 5.456473555193242e-06,
|
1184 |
+
"loss": 0.3974,
|
1185 |
+
"step": 190
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.49,
|
1189 |
+
"learning_rate": 5.415076347022777e-06,
|
1190 |
+
"loss": 0.4699,
|
1191 |
+
"step": 191
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.49,
|
1195 |
+
"learning_rate": 5.373650467932122e-06,
|
1196 |
+
"loss": 0.4385,
|
1197 |
+
"step": 192
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.49,
|
1201 |
+
"learning_rate": 5.332198779366123e-06,
|
1202 |
+
"loss": 0.4943,
|
1203 |
+
"step": 193
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.5,
|
1207 |
+
"learning_rate": 5.290724144552379e-06,
|
1208 |
+
"loss": 0.4705,
|
1209 |
+
"step": 194
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.5,
|
1213 |
+
"learning_rate": 5.249229428303486e-06,
|
1214 |
+
"loss": 0.5045,
|
1215 |
+
"step": 195
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.5,
|
1219 |
+
"learning_rate": 5.207717496819134e-06,
|
1220 |
+
"loss": 0.5795,
|
1221 |
+
"step": 196
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.5,
|
1225 |
+
"learning_rate": 5.166191217488134e-06,
|
1226 |
+
"loss": 0.4442,
|
1227 |
+
"step": 197
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.51,
|
1231 |
+
"learning_rate": 5.1246534586903655e-06,
|
1232 |
+
"loss": 0.4642,
|
1233 |
+
"step": 198
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.51,
|
1237 |
+
"learning_rate": 5.083107089598632e-06,
|
1238 |
+
"loss": 0.4908,
|
1239 |
+
"step": 199
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.51,
|
1243 |
+
"learning_rate": 5.041554979980487e-06,
|
1244 |
+
"loss": 0.4577,
|
1245 |
+
"step": 200
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.51,
|
1249 |
+
"learning_rate": 5e-06,
|
1250 |
+
"loss": 0.402,
|
1251 |
+
"step": 201
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.52,
|
1255 |
+
"learning_rate": 4.958445020019516e-06,
|
1256 |
+
"loss": 0.4191,
|
1257 |
+
"step": 202
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.52,
|
1261 |
+
"learning_rate": 4.916892910401369e-06,
|
1262 |
+
"loss": 0.4828,
|
1263 |
+
"step": 203
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.52,
|
1267 |
+
"learning_rate": 4.875346541309637e-06,
|
1268 |
+
"loss": 0.4478,
|
1269 |
+
"step": 204
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.52,
|
1273 |
+
"learning_rate": 4.833808782511867e-06,
|
1274 |
+
"loss": 0.5202,
|
1275 |
+
"step": 205
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.53,
|
1279 |
+
"learning_rate": 4.792282503180867e-06,
|
1280 |
+
"loss": 0.3495,
|
1281 |
+
"step": 206
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.53,
|
1285 |
+
"learning_rate": 4.750770571696514e-06,
|
1286 |
+
"loss": 0.5703,
|
1287 |
+
"step": 207
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.53,
|
1291 |
+
"learning_rate": 4.7092758554476215e-06,
|
1292 |
+
"loss": 0.3986,
|
1293 |
+
"step": 208
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.54,
|
1297 |
+
"learning_rate": 4.66780122063388e-06,
|
1298 |
+
"loss": 0.3185,
|
1299 |
+
"step": 209
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.54,
|
1303 |
+
"learning_rate": 4.626349532067879e-06,
|
1304 |
+
"loss": 0.4846,
|
1305 |
+
"step": 210
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.54,
|
1309 |
+
"learning_rate": 4.584923652977224e-06,
|
1310 |
+
"loss": 0.4592,
|
1311 |
+
"step": 211
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.54,
|
1315 |
+
"learning_rate": 4.5435264448067595e-06,
|
1316 |
+
"loss": 0.4666,
|
1317 |
+
"step": 212
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.55,
|
1321 |
+
"learning_rate": 4.502160767020918e-06,
|
1322 |
+
"loss": 0.428,
|
1323 |
+
"step": 213
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.55,
|
1327 |
+
"learning_rate": 4.460829476906208e-06,
|
1328 |
+
"loss": 0.5192,
|
1329 |
+
"step": 214
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.55,
|
1333 |
+
"learning_rate": 4.4195354293738484e-06,
|
1334 |
+
"loss": 0.4456,
|
1335 |
+
"step": 215
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.55,
|
1339 |
+
"learning_rate": 4.3782814767625755e-06,
|
1340 |
+
"loss": 0.5031,
|
1341 |
+
"step": 216
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.56,
|
1345 |
+
"learning_rate": 4.337070468641604e-06,
|
1346 |
+
"loss": 0.3835,
|
1347 |
+
"step": 217
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.56,
|
1351 |
+
"learning_rate": 4.295905251613817e-06,
|
1352 |
+
"loss": 0.4406,
|
1353 |
+
"step": 218
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.56,
|
1357 |
+
"learning_rate": 4.254788669119127e-06,
|
1358 |
+
"loss": 0.4374,
|
1359 |
+
"step": 219
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.56,
|
1363 |
+
"learning_rate": 4.213723561238074e-06,
|
1364 |
+
"loss": 0.4021,
|
1365 |
+
"step": 220
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.57,
|
1369 |
+
"learning_rate": 4.172712764495645e-06,
|
1370 |
+
"loss": 0.5134,
|
1371 |
+
"step": 221
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.57,
|
1375 |
+
"learning_rate": 4.131759111665349e-06,
|
1376 |
+
"loss": 0.4838,
|
1377 |
+
"step": 222
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.57,
|
1381 |
+
"learning_rate": 4.090865431573547e-06,
|
1382 |
+
"loss": 0.4011,
|
1383 |
+
"step": 223
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.57,
|
1387 |
+
"learning_rate": 4.0500345489040515e-06,
|
1388 |
+
"loss": 0.3548,
|
1389 |
+
"step": 224
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.58,
|
1393 |
+
"learning_rate": 4.009269284003014e-06,
|
1394 |
+
"loss": 0.391,
|
1395 |
+
"step": 225
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.58,
|
1399 |
+
"eval_accuracy": 0.8278573148685179,
|
1400 |
+
"eval_accuracy_<|content|>": 0.9986945169712794,
|
1401 |
+
"eval_accuracy_<|from|>": 0.9949431099873578,
|
1402 |
+
"eval_accuracy_<|recipient|>": 1.0,
|
1403 |
+
"eval_accuracy_<|stop|>": 0.939607670266696,
|
1404 |
+
"eval_accuracy_total_num_<|content|>": 5362,
|
1405 |
+
"eval_accuracy_total_num_<|from|>": 791,
|
1406 |
+
"eval_accuracy_total_num_<|recipient|>": 791,
|
1407 |
+
"eval_accuracy_total_num_<|stop|>": 4537,
|
1408 |
+
"eval_loss": NaN,
|
1409 |
+
"eval_perplexity": 1.0600965829681877,
|
1410 |
+
"eval_runtime": 334.7156,
|
1411 |
+
"eval_samples_per_second": 4.108,
|
1412 |
+
"eval_steps_per_second": 0.514,
|
1413 |
+
"step": 225
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.58,
|
1417 |
+
"learning_rate": 3.968572452684113e-06,
|
1418 |
+
"loss": 0.5301,
|
1419 |
+
"step": 226
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.58,
|
1423 |
+
"learning_rate": 3.927946866034062e-06,
|
1424 |
+
"loss": 0.4173,
|
1425 |
+
"step": 227
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.58,
|
1429 |
+
"learning_rate": 3.887395330218429e-06,
|
1430 |
+
"loss": 0.5295,
|
1431 |
+
"step": 228
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.59,
|
1435 |
+
"learning_rate": 3.8469206462878e-06,
|
1436 |
+
"loss": 0.3869,
|
1437 |
+
"step": 229
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.59,
|
1441 |
+
"learning_rate": 3.806525609984312e-06,
|
1442 |
+
"loss": 0.4667,
|
1443 |
+
"step": 230
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.59,
|
1447 |
+
"learning_rate": 3.7662130115485317e-06,
|
1448 |
+
"loss": 0.4839,
|
1449 |
+
"step": 231
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.59,
|
1453 |
+
"learning_rate": 3.7259856355267275e-06,
|
1454 |
+
"loss": 0.4778,
|
1455 |
+
"step": 232
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.6,
|
1459 |
+
"learning_rate": 3.685846260578524e-06,
|
1460 |
+
"loss": 0.4695,
|
1461 |
+
"step": 233
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.6,
|
1465 |
+
"learning_rate": 3.6457976592849753e-06,
|
1466 |
+
"loss": 0.4,
|
1467 |
+
"step": 234
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.6,
|
1471 |
+
"learning_rate": 3.6058425979570482e-06,
|
1472 |
+
"loss": 0.441,
|
1473 |
+
"step": 235
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.6,
|
1477 |
+
"learning_rate": 3.5659838364445505e-06,
|
1478 |
+
"loss": 0.4077,
|
1479 |
+
"step": 236
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.61,
|
1483 |
+
"learning_rate": 3.526224127945479e-06,
|
1484 |
+
"loss": 0.4368,
|
1485 |
+
"step": 237
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.61,
|
1489 |
+
"learning_rate": 3.4865662188158713e-06,
|
1490 |
+
"loss": 0.5274,
|
1491 |
+
"step": 238
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.61,
|
1495 |
+
"learning_rate": 3.4470128483800813e-06,
|
1496 |
+
"loss": 0.4905,
|
1497 |
+
"step": 239
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.61,
|
1501 |
+
"learning_rate": 3.4075667487415785e-06,
|
1502 |
+
"loss": 0.5323,
|
1503 |
+
"step": 240
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.62,
|
1507 |
+
"learning_rate": 3.3682306445942224e-06,
|
1508 |
+
"loss": 0.5451,
|
1509 |
+
"step": 241
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.62,
|
1513 |
+
"learning_rate": 3.3290072530340628e-06,
|
1514 |
+
"loss": 0.4653,
|
1515 |
+
"step": 242
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.62,
|
1519 |
+
"learning_rate": 3.289899283371657e-06,
|
1520 |
+
"loss": 0.4957,
|
1521 |
+
"step": 243
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.62,
|
1525 |
+
"learning_rate": 3.250909436944928e-06,
|
1526 |
+
"loss": 0.423,
|
1527 |
+
"step": 244
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.63,
|
1531 |
+
"learning_rate": 3.2120404069325695e-06,
|
1532 |
+
"loss": 0.5153,
|
1533 |
+
"step": 245
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.63,
|
1537 |
+
"learning_rate": 3.173294878168025e-06,
|
1538 |
+
"loss": 0.4329,
|
1539 |
+
"step": 246
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.63,
|
1543 |
+
"learning_rate": 3.1346755269540303e-06,
|
1544 |
+
"loss": 0.377,
|
1545 |
+
"step": 247
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.64,
|
1549 |
+
"learning_rate": 3.0961850208777527e-06,
|
1550 |
+
"loss": 0.4111,
|
1551 |
+
"step": 248
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.64,
|
1555 |
+
"learning_rate": 3.057826018626527e-06,
|
1556 |
+
"loss": 0.3951,
|
1557 |
+
"step": 249
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.64,
|
1561 |
+
"learning_rate": 3.019601169804216e-06,
|
1562 |
+
"loss": 0.5059,
|
1563 |
+
"step": 250
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.64,
|
1567 |
+
"learning_rate": 2.981513114748189e-06,
|
1568 |
+
"loss": 0.4764,
|
1569 |
+
"step": 251
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.65,
|
1573 |
+
"learning_rate": 2.9435644843469434e-06,
|
1574 |
+
"loss": 0.4289,
|
1575 |
+
"step": 252
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.65,
|
1579 |
+
"learning_rate": 2.905757899858377e-06,
|
1580 |
+
"loss": 0.26,
|
1581 |
+
"step": 253
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.65,
|
1585 |
+
"learning_rate": 2.8680959727287316e-06,
|
1586 |
+
"loss": 0.4835,
|
1587 |
+
"step": 254
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.65,
|
1591 |
+
"learning_rate": 2.83058130441221e-06,
|
1592 |
+
"loss": 0.4426,
|
1593 |
+
"step": 255
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.66,
|
1597 |
+
"learning_rate": 2.7932164861912805e-06,
|
1598 |
+
"loss": 0.4571,
|
1599 |
+
"step": 256
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.66,
|
1603 |
+
"learning_rate": 2.7560040989976894e-06,
|
1604 |
+
"loss": 0.5578,
|
1605 |
+
"step": 257
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.66,
|
1609 |
+
"learning_rate": 2.718946713234185e-06,
|
1610 |
+
"loss": 0.3772,
|
1611 |
+
"step": 258
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.66,
|
1615 |
+
"learning_rate": 2.682046888596972e-06,
|
1616 |
+
"loss": 0.4563,
|
1617 |
+
"step": 259
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.67,
|
1621 |
+
"learning_rate": 2.645307173898901e-06,
|
1622 |
+
"loss": 0.5051,
|
1623 |
+
"step": 260
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.67,
|
1627 |
+
"learning_rate": 2.608730106893411e-06,
|
1628 |
+
"loss": 0.4382,
|
1629 |
+
"step": 261
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.67,
|
1633 |
+
"learning_rate": 2.5723182140992385e-06,
|
1634 |
+
"loss": 0.4664,
|
1635 |
+
"step": 262
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.67,
|
1639 |
+
"learning_rate": 2.536074010625911e-06,
|
1640 |
+
"loss": 0.3587,
|
1641 |
+
"step": 263
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.68,
|
1645 |
+
"learning_rate": 2.5000000000000015e-06,
|
1646 |
+
"loss": 0.3431,
|
1647 |
+
"step": 264
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.68,
|
1651 |
+
"learning_rate": 2.464098673992205e-06,
|
1652 |
+
"loss": 0.3606,
|
1653 |
+
"step": 265
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.68,
|
1657 |
+
"learning_rate": 2.428372512445233e-06,
|
1658 |
+
"loss": 0.4422,
|
1659 |
+
"step": 266
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.68,
|
1663 |
+
"learning_rate": 2.39282398310251e-06,
|
1664 |
+
"loss": 0.5567,
|
1665 |
+
"step": 267
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.69,
|
1669 |
+
"learning_rate": 2.357455541437723e-06,
|
1670 |
+
"loss": 0.4313,
|
1671 |
+
"step": 268
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.69,
|
1675 |
+
"learning_rate": 2.3222696304852084e-06,
|
1676 |
+
"loss": 0.5045,
|
1677 |
+
"step": 269
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.69,
|
1681 |
+
"learning_rate": 2.2872686806712037e-06,
|
1682 |
+
"loss": 0.4603,
|
1683 |
+
"step": 270
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.69,
|
1687 |
+
"learning_rate": 2.2524551096459703e-06,
|
1688 |
+
"loss": 0.5706,
|
1689 |
+
"step": 271
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.7,
|
1693 |
+
"learning_rate": 2.217831322116797e-06,
|
1694 |
+
"loss": 0.4547,
|
1695 |
+
"step": 272
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.7,
|
1699 |
+
"learning_rate": 2.1833997096818897e-06,
|
1700 |
+
"loss": 0.4556,
|
1701 |
+
"step": 273
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.7,
|
1705 |
+
"learning_rate": 2.1491626506651914e-06,
|
1706 |
+
"loss": 0.5204,
|
1707 |
+
"step": 274
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.7,
|
1711 |
+
"learning_rate": 2.115122509952085e-06,
|
1712 |
+
"loss": 0.3224,
|
1713 |
+
"step": 275
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.71,
|
1717 |
+
"learning_rate": 2.081281638826052e-06,
|
1718 |
+
"loss": 0.5885,
|
1719 |
+
"step": 276
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.71,
|
1723 |
+
"learning_rate": 2.047642374806252e-06,
|
1724 |
+
"loss": 0.6023,
|
1725 |
+
"step": 277
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.71,
|
1729 |
+
"learning_rate": 2.0142070414860704e-06,
|
1730 |
+
"loss": 0.4437,
|
1731 |
+
"step": 278
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.71,
|
1735 |
+
"learning_rate": 1.980977948372612e-06,
|
1736 |
+
"loss": 0.4753,
|
1737 |
+
"step": 279
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.72,
|
1741 |
+
"learning_rate": 1.947957390727185e-06,
|
1742 |
+
"loss": 0.4953,
|
1743 |
+
"step": 280
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.72,
|
1747 |
+
"learning_rate": 1.9151476494067376e-06,
|
1748 |
+
"loss": 0.379,
|
1749 |
+
"step": 281
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.72,
|
1753 |
+
"learning_rate": 1.8825509907063328e-06,
|
1754 |
+
"loss": 0.459,
|
1755 |
+
"step": 282
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.72,
|
1759 |
+
"learning_rate": 1.8501696662025937e-06,
|
1760 |
+
"loss": 0.5653,
|
1761 |
+
"step": 283
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.73,
|
1765 |
+
"learning_rate": 1.8180059125981826e-06,
|
1766 |
+
"loss": 0.3608,
|
1767 |
+
"step": 284
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.73,
|
1771 |
+
"learning_rate": 1.7860619515673034e-06,
|
1772 |
+
"loss": 0.4926,
|
1773 |
+
"step": 285
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.73,
|
1777 |
+
"learning_rate": 1.7543399896022406e-06,
|
1778 |
+
"loss": 0.3828,
|
1779 |
+
"step": 286
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.73,
|
1783 |
+
"learning_rate": 1.7228422178609488e-06,
|
1784 |
+
"loss": 0.3937,
|
1785 |
+
"step": 287
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.74,
|
1789 |
+
"learning_rate": 1.6915708120157042e-06,
|
1790 |
+
"loss": 0.3875,
|
1791 |
+
"step": 288
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.74,
|
1795 |
+
"learning_rate": 1.6605279321028138e-06,
|
1796 |
+
"loss": 0.4678,
|
1797 |
+
"step": 289
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.74,
|
1801 |
+
"learning_rate": 1.6297157223734228e-06,
|
1802 |
+
"loss": 0.5462,
|
1803 |
+
"step": 290
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.75,
|
1807 |
+
"learning_rate": 1.5991363111454023e-06,
|
1808 |
+
"loss": 0.476,
|
1809 |
+
"step": 291
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.75,
|
1813 |
+
"learning_rate": 1.5687918106563326e-06,
|
1814 |
+
"loss": 0.5062,
|
1815 |
+
"step": 292
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.75,
|
1819 |
+
"learning_rate": 1.5386843169176025e-06,
|
1820 |
+
"loss": 0.5062,
|
1821 |
+
"step": 293
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.75,
|
1825 |
+
"learning_rate": 1.5088159095696365e-06,
|
1826 |
+
"loss": 0.4348,
|
1827 |
+
"step": 294
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.76,
|
1831 |
+
"learning_rate": 1.4791886517382415e-06,
|
1832 |
+
"loss": 0.3801,
|
1833 |
+
"step": 295
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.76,
|
1837 |
+
"learning_rate": 1.4498045898920988e-06,
|
1838 |
+
"loss": 0.4874,
|
1839 |
+
"step": 296
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.76,
|
1843 |
+
"learning_rate": 1.4206657537014078e-06,
|
1844 |
+
"loss": 0.5251,
|
1845 |
+
"step": 297
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.76,
|
1849 |
+
"learning_rate": 1.3917741558976894e-06,
|
1850 |
+
"loss": 0.3894,
|
1851 |
+
"step": 298
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.77,
|
1855 |
+
"learning_rate": 1.3631317921347564e-06,
|
1856 |
+
"loss": 0.3325,
|
1857 |
+
"step": 299
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.77,
|
1861 |
+
"learning_rate": 1.3347406408508695e-06,
|
1862 |
+
"loss": 0.4508,
|
1863 |
+
"step": 300
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.77,
|
1867 |
+
"eval_accuracy": 0.8337530653153841,
|
1868 |
+
"eval_accuracy_<|content|>": 1.0,
|
1869 |
+
"eval_accuracy_<|from|>": 0.9911504424778761,
|
1870 |
+
"eval_accuracy_<|recipient|>": 1.0,
|
1871 |
+
"eval_accuracy_<|stop|>": 0.9329953713907868,
|
1872 |
+
"eval_accuracy_total_num_<|content|>": 5362,
|
1873 |
+
"eval_accuracy_total_num_<|from|>": 791,
|
1874 |
+
"eval_accuracy_total_num_<|recipient|>": 791,
|
1875 |
+
"eval_accuracy_total_num_<|stop|>": 4537,
|
1876 |
+
"eval_loss": NaN,
|
1877 |
+
"eval_perplexity": 1.0576072932064766,
|
1878 |
+
"eval_runtime": 333.0641,
|
1879 |
+
"eval_samples_per_second": 4.128,
|
1880 |
+
"eval_steps_per_second": 0.516,
|
1881 |
+
"step": 300
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.77,
|
1885 |
+
"learning_rate": 1.3066026631320733e-06,
|
1886 |
+
"loss": 0.3393,
|
1887 |
+
"step": 301
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.77,
|
1891 |
+
"learning_rate": 1.2787198025767417e-06,
|
1892 |
+
"loss": 0.5482,
|
1893 |
+
"step": 302
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.78,
|
1897 |
+
"learning_rate": 1.2510939851613285e-06,
|
1898 |
+
"loss": 0.4206,
|
1899 |
+
"step": 303
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.78,
|
1903 |
+
"learning_rate": 1.223727119107327e-06,
|
1904 |
+
"loss": 0.4613,
|
1905 |
+
"step": 304
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.78,
|
1909 |
+
"learning_rate": 1.1966210947494583e-06,
|
1910 |
+
"loss": 0.3015,
|
1911 |
+
"step": 305
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.78,
|
1915 |
+
"learning_rate": 1.1697777844051105e-06,
|
1916 |
+
"loss": 0.4651,
|
1917 |
+
"step": 306
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.79,
|
1921 |
+
"learning_rate": 1.1431990422450018e-06,
|
1922 |
+
"loss": 0.3467,
|
1923 |
+
"step": 307
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.79,
|
1927 |
+
"learning_rate": 1.1168867041651082e-06,
|
1928 |
+
"loss": 0.4167,
|
1929 |
+
"step": 308
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.79,
|
1933 |
+
"learning_rate": 1.0908425876598512e-06,
|
1934 |
+
"loss": 0.4565,
|
1935 |
+
"step": 309
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.79,
|
1939 |
+
"learning_rate": 1.065068491696556e-06,
|
1940 |
+
"loss": 0.5543,
|
1941 |
+
"step": 310
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.8,
|
1945 |
+
"learning_rate": 1.0395661965911891e-06,
|
1946 |
+
"loss": 0.4687,
|
1947 |
+
"step": 311
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.8,
|
1951 |
+
"learning_rate": 1.0143374638853892e-06,
|
1952 |
+
"loss": 0.4595,
|
1953 |
+
"step": 312
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.8,
|
1957 |
+
"learning_rate": 9.893840362247809e-07,
|
1958 |
+
"loss": 0.4511,
|
1959 |
+
"step": 313
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.8,
|
1963 |
+
"learning_rate": 9.647076372386195e-07,
|
1964 |
+
"loss": 0.4676,
|
1965 |
+
"step": 314
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.81,
|
1969 |
+
"learning_rate": 9.403099714207175e-07,
|
1970 |
+
"loss": 0.4385,
|
1971 |
+
"step": 315
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.81,
|
1975 |
+
"learning_rate": 9.161927240117174e-07,
|
1976 |
+
"loss": 0.3807,
|
1977 |
+
"step": 316
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.81,
|
1981 |
+
"learning_rate": 8.923575608826812e-07,
|
1982 |
+
"loss": 0.4795,
|
1983 |
+
"step": 317
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.81,
|
1987 |
+
"learning_rate": 8.688061284200266e-07,
|
1988 |
+
"loss": 0.5137,
|
1989 |
+
"step": 318
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.82,
|
1993 |
+
"learning_rate": 8.455400534118008e-07,
|
1994 |
+
"loss": 0.4358,
|
1995 |
+
"step": 319
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.82,
|
1999 |
+
"learning_rate": 8.225609429353187e-07,
|
2000 |
+
"loss": 0.5148,
|
2001 |
+
"step": 320
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.82,
|
2005 |
+
"learning_rate": 7.99870384246143e-07,
|
2006 |
+
"loss": 0.4713,
|
2007 |
+
"step": 321
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.82,
|
2011 |
+
"learning_rate": 7.774699446684608e-07,
|
2012 |
+
"loss": 0.4893,
|
2013 |
+
"step": 322
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.83,
|
2017 |
+
"learning_rate": 7.553611714868136e-07,
|
2018 |
+
"loss": 0.4368,
|
2019 |
+
"step": 323
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.83,
|
2023 |
+
"learning_rate": 7.33545591839222e-07,
|
2024 |
+
"loss": 0.4275,
|
2025 |
+
"step": 324
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.83,
|
2029 |
+
"learning_rate": 7.120247126117025e-07,
|
2030 |
+
"loss": 0.4828,
|
2031 |
+
"step": 325
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.83,
|
2035 |
+
"learning_rate": 6.908000203341802e-07,
|
2036 |
+
"loss": 0.5223,
|
2037 |
+
"step": 326
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.84,
|
2041 |
+
"learning_rate": 6.698729810778065e-07,
|
2042 |
+
"loss": 0.4837,
|
2043 |
+
"step": 327
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.84,
|
2047 |
+
"learning_rate": 6.492450403536959e-07,
|
2048 |
+
"loss": 0.4888,
|
2049 |
+
"step": 328
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.84,
|
2053 |
+
"learning_rate": 6.289176230130728e-07,
|
2054 |
+
"loss": 0.4453,
|
2055 |
+
"step": 329
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.85,
|
2059 |
+
"learning_rate": 6.088921331488568e-07,
|
2060 |
+
"loss": 0.4143,
|
2061 |
+
"step": 330
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.85,
|
2065 |
+
"learning_rate": 5.891699539986789e-07,
|
2066 |
+
"loss": 0.4453,
|
2067 |
+
"step": 331
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.85,
|
2071 |
+
"learning_rate": 5.697524478493288e-07,
|
2072 |
+
"loss": 0.4139,
|
2073 |
+
"step": 332
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.85,
|
2077 |
+
"learning_rate": 5.506409559426573e-07,
|
2078 |
+
"loss": 0.4899,
|
2079 |
+
"step": 333
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.86,
|
2083 |
+
"learning_rate": 5.318367983829393e-07,
|
2084 |
+
"loss": 0.3488,
|
2085 |
+
"step": 334
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.86,
|
2089 |
+
"learning_rate": 5.133412740456805e-07,
|
2090 |
+
"loss": 0.5504,
|
2091 |
+
"step": 335
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.86,
|
2095 |
+
"learning_rate": 4.951556604879049e-07,
|
2096 |
+
"loss": 0.2987,
|
2097 |
+
"step": 336
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.86,
|
2101 |
+
"learning_rate": 4.772812138599043e-07,
|
2102 |
+
"loss": 0.503,
|
2103 |
+
"step": 337
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.87,
|
2107 |
+
"learning_rate": 4.5971916881847543e-07,
|
2108 |
+
"loss": 0.3901,
|
2109 |
+
"step": 338
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.87,
|
2113 |
+
"learning_rate": 4.4247073844163434e-07,
|
2114 |
+
"loss": 0.4166,
|
2115 |
+
"step": 339
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.87,
|
2119 |
+
"learning_rate": 4.255371141448272e-07,
|
2120 |
+
"loss": 0.4068,
|
2121 |
+
"step": 340
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.87,
|
2125 |
+
"learning_rate": 4.089194655986306e-07,
|
2126 |
+
"loss": 0.4019,
|
2127 |
+
"step": 341
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.88,
|
2131 |
+
"learning_rate": 3.9261894064796136e-07,
|
2132 |
+
"loss": 0.4503,
|
2133 |
+
"step": 342
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.88,
|
2137 |
+
"learning_rate": 3.766366652327924e-07,
|
2138 |
+
"loss": 0.4989,
|
2139 |
+
"step": 343
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.88,
|
2143 |
+
"learning_rate": 3.6097374331037326e-07,
|
2144 |
+
"loss": 0.4407,
|
2145 |
+
"step": 344
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.88,
|
2149 |
+
"learning_rate": 3.4563125677897936e-07,
|
2150 |
+
"loss": 0.3357,
|
2151 |
+
"step": 345
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.89,
|
2155 |
+
"learning_rate": 3.306102654031823e-07,
|
2156 |
+
"loss": 0.4232,
|
2157 |
+
"step": 346
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.89,
|
2161 |
+
"learning_rate": 3.1591180674064584e-07,
|
2162 |
+
"loss": 0.3591,
|
2163 |
+
"step": 347
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.89,
|
2167 |
+
"learning_rate": 3.015368960704584e-07,
|
2168 |
+
"loss": 0.4366,
|
2169 |
+
"step": 348
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 0.89,
|
2173 |
+
"learning_rate": 2.8748652632300367e-07,
|
2174 |
+
"loss": 0.4547,
|
2175 |
+
"step": 349
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 0.9,
|
2179 |
+
"learning_rate": 2.737616680113758e-07,
|
2180 |
+
"loss": 0.386,
|
2181 |
+
"step": 350
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.9,
|
2185 |
+
"learning_rate": 2.6036326916434153e-07,
|
2186 |
+
"loss": 0.4585,
|
2187 |
+
"step": 351
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.9,
|
2191 |
+
"learning_rate": 2.472922552608559e-07,
|
2192 |
+
"loss": 0.4554,
|
2193 |
+
"step": 352
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.9,
|
2197 |
+
"learning_rate": 2.3454952916613482e-07,
|
2198 |
+
"loss": 0.4524,
|
2199 |
+
"step": 353
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.91,
|
2203 |
+
"learning_rate": 2.2213597106929608e-07,
|
2204 |
+
"loss": 0.3612,
|
2205 |
+
"step": 354
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.91,
|
2209 |
+
"learning_rate": 2.1005243842255552e-07,
|
2210 |
+
"loss": 0.4398,
|
2211 |
+
"step": 355
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 0.91,
|
2215 |
+
"learning_rate": 1.982997658820013e-07,
|
2216 |
+
"loss": 0.3687,
|
2217 |
+
"step": 356
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 0.91,
|
2221 |
+
"learning_rate": 1.8687876524993987e-07,
|
2222 |
+
"loss": 0.3961,
|
2223 |
+
"step": 357
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.92,
|
2227 |
+
"learning_rate": 1.757902254188254e-07,
|
2228 |
+
"loss": 0.4561,
|
2229 |
+
"step": 358
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.92,
|
2233 |
+
"learning_rate": 1.6503491231676382e-07,
|
2234 |
+
"loss": 0.4427,
|
2235 |
+
"step": 359
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.92,
|
2239 |
+
"learning_rate": 1.5461356885461077e-07,
|
2240 |
+
"loss": 0.4432,
|
2241 |
+
"step": 360
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.92,
|
2245 |
+
"learning_rate": 1.4452691487465087e-07,
|
2246 |
+
"loss": 0.4639,
|
2247 |
+
"step": 361
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 0.93,
|
2251 |
+
"learning_rate": 1.3477564710088097e-07,
|
2252 |
+
"loss": 0.4095,
|
2253 |
+
"step": 362
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 0.93,
|
2257 |
+
"learning_rate": 1.253604390908819e-07,
|
2258 |
+
"loss": 0.3953,
|
2259 |
+
"step": 363
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 0.93,
|
2263 |
+
"learning_rate": 1.1628194118929403e-07,
|
2264 |
+
"loss": 0.4071,
|
2265 |
+
"step": 364
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.93,
|
2269 |
+
"learning_rate": 1.0754078048289374e-07,
|
2270 |
+
"loss": 0.4452,
|
2271 |
+
"step": 365
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.94,
|
2275 |
+
"learning_rate": 9.913756075728088e-08,
|
2276 |
+
"loss": 0.433,
|
2277 |
+
"step": 366
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.94,
|
2281 |
+
"learning_rate": 9.1072862455171e-08,
|
2282 |
+
"loss": 0.4269,
|
2283 |
+
"step": 367
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.94,
|
2287 |
+
"learning_rate": 8.334724263630301e-08,
|
2288 |
+
"loss": 0.4502,
|
2289 |
+
"step": 368
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 0.94,
|
2293 |
+
"learning_rate": 7.59612349389599e-08,
|
2294 |
+
"loss": 0.3055,
|
2295 |
+
"step": 369
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 0.95,
|
2299 |
+
"learning_rate": 6.891534954310886e-08,
|
2300 |
+
"loss": 0.4559,
|
2301 |
+
"step": 370
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 0.95,
|
2305 |
+
"learning_rate": 6.221007313516159e-08,
|
2306 |
+
"loss": 0.3325,
|
2307 |
+
"step": 371
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.95,
|
2311 |
+
"learning_rate": 5.584586887435739e-08,
|
2312 |
+
"loss": 0.5016,
|
2313 |
+
"step": 372
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.96,
|
2317 |
+
"learning_rate": 4.9823176360768166e-08,
|
2318 |
+
"loss": 0.363,
|
2319 |
+
"step": 373
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.96,
|
2323 |
+
"learning_rate": 4.41424116049366e-08,
|
2324 |
+
"loss": 0.5222,
|
2325 |
+
"step": 374
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.96,
|
2329 |
+
"learning_rate": 3.8803966999139686e-08,
|
2330 |
+
"loss": 0.4091,
|
2331 |
+
"step": 375
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 0.96,
|
2335 |
+
"eval_accuracy": 0.8351479322052294,
|
2336 |
+
"eval_accuracy_<|content|>": 1.0,
|
2337 |
+
"eval_accuracy_<|from|>": 0.9924146649810367,
|
2338 |
+
"eval_accuracy_<|recipient|>": 1.0,
|
2339 |
+
"eval_accuracy_<|stop|>": 0.9301300418778928,
|
2340 |
+
"eval_accuracy_total_num_<|content|>": 5362,
|
2341 |
+
"eval_accuracy_total_num_<|from|>": 791,
|
2342 |
+
"eval_accuracy_total_num_<|recipient|>": 791,
|
2343 |
+
"eval_accuracy_total_num_<|stop|>": 4537,
|
2344 |
+
"eval_loss": NaN,
|
2345 |
+
"eval_perplexity": 1.0568973984577945,
|
2346 |
+
"eval_runtime": 333.4139,
|
2347 |
+
"eval_samples_per_second": 4.124,
|
2348 |
+
"eval_steps_per_second": 0.516,
|
2349 |
+
"step": 375
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.96,
|
2353 |
+
"learning_rate": 3.3808211290284886e-08,
|
2354 |
+
"loss": 0.3643,
|
2355 |
+
"step": 376
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.97,
|
2359 |
+
"learning_rate": 2.9155489554439364e-08,
|
2360 |
+
"loss": 0.3772,
|
2361 |
+
"step": 377
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.97,
|
2365 |
+
"learning_rate": 2.4846123172992953e-08,
|
2366 |
+
"loss": 0.4053,
|
2367 |
+
"step": 378
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.97,
|
2371 |
+
"learning_rate": 2.088040981046091e-08,
|
2372 |
+
"loss": 0.4798,
|
2373 |
+
"step": 379
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 0.97,
|
2377 |
+
"learning_rate": 1.725862339392259e-08,
|
2378 |
+
"loss": 0.524,
|
2379 |
+
"step": 380
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 0.98,
|
2383 |
+
"learning_rate": 1.3981014094099354e-08,
|
2384 |
+
"loss": 0.4353,
|
2385 |
+
"step": 381
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 0.98,
|
2389 |
+
"learning_rate": 1.1047808308075059e-08,
|
2390 |
+
"loss": 0.4712,
|
2391 |
+
"step": 382
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.98,
|
2395 |
+
"learning_rate": 8.459208643659122e-09,
|
2396 |
+
"loss": 0.533,
|
2397 |
+
"step": 383
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.98,
|
2401 |
+
"learning_rate": 6.215393905388278e-09,
|
2402 |
+
"loss": 0.2897,
|
2403 |
+
"step": 384
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.99,
|
2407 |
+
"learning_rate": 4.316519082179227e-09,
|
2408 |
+
"loss": 0.4482,
|
2409 |
+
"step": 385
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.99,
|
2413 |
+
"learning_rate": 2.7627153366222014e-09,
|
2414 |
+
"loss": 0.4109,
|
2415 |
+
"step": 386
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 0.99,
|
2419 |
+
"learning_rate": 1.5540899959187727e-09,
|
2420 |
+
"loss": 0.3478,
|
2421 |
+
"step": 387
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.99,
|
2425 |
+
"learning_rate": 6.907265444716649e-10,
|
2426 |
+
"loss": 0.4204,
|
2427 |
+
"step": 388
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 1.0,
|
2431 |
+
"learning_rate": 1.7268461811548176e-10,
|
2432 |
+
"loss": 0.3867,
|
2433 |
+
"step": 389
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 1.0,
|
2437 |
+
"learning_rate": 0.0,
|
2438 |
+
"loss": 0.3951,
|
2439 |
+
"step": 390
|
2440 |
+
}
|
2441 |
+
],
|
2442 |
+
"logging_steps": 1.0,
|
2443 |
+
"max_steps": 390,
|
2444 |
+
"num_input_tokens_seen": 0,
|
2445 |
+
"num_train_epochs": 1,
|
2446 |
+
"save_steps": 100.0,
|
2447 |
+
"total_flos": 805496420302848.0,
|
2448 |
+
"train_batch_size": 2,
|
2449 |
+
"trial_name": null,
|
2450 |
+
"trial_params": null
|
2451 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:936ccd54cf8edf2ce8140aaad2de673d89dd72a800dcb4945b61018de3b9ce42
|
3 |
+
size 6075
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|