File size: 9,400 Bytes
4824adb
 
fb58257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4824adb
 
 
c262843
 
4824adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae0a4b1
4824adb
 
 
 
ae0a4b1
29db9eb
4824adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae0a4b1
4824adb
ae0a4b1
4824adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29db9eb
4824adb
29db9eb
4824adb
29db9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4824adb
 
 
 
29db9eb
4824adb
 
 
 
 
 
 
fb58257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
---
license: mit
model-index:
- name: functionary-small-v3.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 62.75
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=meetkai%2Ffunctionary-small-v3.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 28.62
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=meetkai%2Ffunctionary-small-v3.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.06
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=meetkai%2Ffunctionary-small-v3.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.15
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=meetkai%2Ffunctionary-small-v3.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.19
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=meetkai%2Ffunctionary-small-v3.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.1
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=meetkai%2Ffunctionary-small-v3.1
      name: Open LLM Leaderboard
---
# Model Card for functionary-small-v3.1

**This model was based on [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**, using Meta's original prompt template as described in: [User-defined Custom tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#user-defined-custom-tool-calling)

[https://github.com/MeetKai/functionary](https://github.com/MeetKai/functionary)

<img src="https://huggingface.co/meetkai/functionary-medium-v2.2/resolve/main/functionary_logo.jpg" alt="Functionary Logo" width="300"/>

Functionary is a language model that can interpret and execute functions/plugins.

The model determines when to execute functions, whether in parallel or serially, and can understand their outputs. It only triggers functions as needed. Function definitions are given as JSON Schema Objects, similar to OpenAI GPT function calls.

## Key Features

- Intelligent **parallel tool use**
- Able to analyze functions/tools outputs and provide relevant responses **grounded in the outputs**
- Able to decide **when to not use tools/call functions** and provide normal chat response
- Truly one of the best open-source alternative to GPT-4
- Support code interpreter

## How to Get Started

We provide custom code for parsing raw model responses into a JSON object containing role, content and tool_calls fields. This enables the users to read the function-calling output of the model easily.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-small-v3.1")
model = AutoModelForCausalLM.from_pretrained("meetkai/functionary-small-v3.1", device_map="auto", trust_remote_code=True)

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA"
                    }
                },
                "required": ["location"]
            }
        }
    }
]
messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]

final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
print(tokenizer.decode(pred.cpu()[0]))
```

## Prompt Template

We convert function definitions to a similar text to TypeScript definitions. Then we inject these definitions as system prompts. After that, we inject the default system prompt. Then we start the conversation messages.

This formatting is also available via our vLLM server which we process the functions into Typescript definitions encapsulated in a system message using a pre-defined Transformers Jinja chat template. This means that the lists of messages can be formatted for you with the apply_chat_template() method within our server:

```python
from openai import OpenAI

client = OpenAI(base_url="http://localhost:8000/v1", api_key="functionary")

client.chat.completions.create(
    model="path/to/functionary/model/",
    messages=[{"role": "user",
            "content": "What is the weather for Istanbul?"}
    ],
    tools=[{
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        }
                    },
                    "required": ["location"]
                }
            }
        }],
    tool_choice="auto"
)
```

will yield:

```
<|start_header_id|>system<|end_header_id|>

Environment: ipython

Cutting Knowledge Date: December 2023


You have access to the following functions:

Use the function 'get_current_weather' to 'Get the current weather'
{"name": "get_current_weather", "description": "Get the current weather", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}},"required": ["location"]}}


Think very carefully before calling functions.
If a you choose to call a function ONLY reply in the following format:
<{start_tag}={function_name}>{parameters}{end_tag}
where

start_tag => `<function`
parameters => a JSON dict with the function argument name as key and function argument value as value.
end_tag => `</function>`

Here is an example,
<function=example_function_name>{"example_name": "example_value"}</function>

Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line

<|eot_id|><|start_header_id|>user<|end_header_id|>

What is the weather for Istanbul?
```

A more detailed example is provided [here](https://github.com/MeetKai/functionary/blob/main/tests/prompt_test_v3-llama3.1.txt).

## Run the model

We encourage users to run our models using our OpenAI-compatible vLLM server [here](https://github.com/MeetKai/functionary).

# The MeetKai Team
![MeetKai Logo](https://huggingface.co/meetkai/functionary-medium-v2.2/resolve/main/meetkai_logo.png "MeetKai Logo")

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/meetkai__functionary-small-v3.1-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=meetkai%2Ffunctionary-small-v3.1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    21.64|
|IFEval (0-Shot)    |    62.75|
|BBH (3-Shot)       |    28.62|
|MATH Lvl 5 (4-Shot)|     1.06|
|GPQA (0-shot)      |     5.15|
|MuSR (0-shot)      |     6.19|
|MMLU-PRO (5-shot)  |    26.10|