dan
commited on
Commit
•
10b1b7d
1
Parent(s):
9e04ee6
Baseline of PPO @ 512k iterations
Browse files- .gitattributes +1 -0
- README.md +28 -0
- baseline_1k.zip +3 -0
- baseline_1k/_stable_baselines3_version +1 -0
- baseline_1k/data +94 -0
- baseline_1k/policy.optimizer.pth +3 -0
- baseline_1k/policy.pth +3 -0
- baseline_1k/pytorch_variables.pth +3 -0
- baseline_1k/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 243.43 +/- 22.55
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
baseline_1k.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4d79368e10a543530297a645f57fd9e88ccc098959ba789a4481ea905e126ed
|
3 |
+
size 144035
|
baseline_1k/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
baseline_1k/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2be1393cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2be1393d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2be1393dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2be1393e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2be1393ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2be1393f80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2be139a050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2be139a0e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2be139a170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2be139a200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2be139a290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2be13d3ed0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 512000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652171755.8090763,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb5RL32hDm6jVh7OZfMJTT8Kk67lKaQuAAAgD8AAIA/msqzvMMhdLoOBzk6eVoVNl0ekrpebVW5AACAPwAAgD+9gq0+nbM/P7Tds740c8m+soIXPo2MdL4AAAAAAAAAAMBf5L17Pqe67ZXXOs1puzXehW46DYz2uQAAgD8AAIA/U/Efvq7Hkjd2kHo8a6RmvO/fFjo41E08AAAAAAAAAADaD/q9j7oQuqbyNjp1agA3rywHO/sGV7kAAIA/AACAP+Ycfr1SAMW5XoR3O4YnPzjKsc065lYYuAAAgD8AAIA/Rq6sPt0KvD5CYhO+bcykvi9cgz3sbZK9AAAAAAAAAABNc0i9wOOIPwLJ6r1nmMW+S0aIvQGWgL0AAAAAAAAAAMDvlD1cb3u66vVMOvFnBTWNqTK7gqNuuQAAgD8AAIA/Gkc+vRQ4mbrAvSO4/jI1s9aQwzo6/zs3AACAPwAAgD8A5mm99vwnum0c6zpiAUy128zHuvMUCLoAAIA/AACAP5pdNT1SQKm5FmxTuYs8XrSTLlm6Fdt2OAAAgD8AAIA/s7OtvSnoYbrGml07zVLitRStUrsl9H66AACAPwAAAADNqFM8e76KuvP+1Ds6yMA4qkTSOo77DLoAAIA/AACAPw5Alr49iDQ8okQZOSV9O7f2GaO9GG0vuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.02400000000000002,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ggc6vfxZkCUhpRSlIwBbJRN6AOMAXSUR0CR6+KAJ9iMdX2UKGgGaAloD0MIRs8tdCWwU0CUhpRSlGgVTegDaBZHQJHsHx6OYIB1fZQoaAZoCWgPQwhCzvv/uAxgQJSGlFKUaBVN6ANoFkdAkfBrhR64UnV9lChoBmgJaA9DCECjdOlfRGFAlIaUUpRoFU3oA2gWR0CR8x9ZzPrwdX2UKGgGaAloD0MIs34zMV2mYECUhpRSlGgVTegDaBZHQJH6h6MR6GB1fZQoaAZoCWgPQwhjfJi97BJiQJSGlFKUaBVN6ANoFkdAkhhzZxrBTHV9lChoBmgJaA9DCHNJ1XYTiF9AlIaUUpRoFU3oA2gWR0CSHSZYPoV3dX2UKGgGaAloD0MIp86j4n/QYUCUhpRSlGgVTegDaBZHQJIeocJdB0J1fZQoaAZoCWgPQwjirl5FRjhhQJSGlFKUaBVN6ANoFkdAkiRgP7N0NnV9lChoBmgJaA9DCEaXN4dro1tAlIaUUpRoFU3oA2gWR0CSJcLv1DjSdX2UKGgGaAloD0MIQfLOoQzfW0CUhpRSlGgVTegDaBZHQJIo3NyHVPN1fZQoaAZoCWgPQwh0m3CvTO9iQJSGlFKUaBVN6ANoFkdAkipawdKdx3V9lChoBmgJaA9DCBiZgF8jjWVAlIaUUpRoFU3oA2gWR0CSKoamGdqddX2UKGgGaAloD0MIE7h1N0+bYUCUhpRSlGgVTegDaBZHQJI8zyiEg4h1fZQoaAZoCWgPQwj6KCMuAI9eQJSGlFKUaBVN6ANoFkdAkj4916mfoXV9lChoBmgJaA9DCPd4IR0eaWJAlIaUUpRoFU3oA2gWR0CSTXIYWLxadX2UKGgGaAloD0MIkkHuIsxAYkCUhpRSlGgVTegDaBZHQJJNmUkfLcN1fZQoaAZoCWgPQwhLH7qgvq9lQJSGlFKUaBVN6ANoFkdAkk3eUY8+zXV9lChoBmgJaA9DCBlxAWiULmVAlIaUUpRoFU3oA2gWR0CSUmpb2USqdX2UKGgGaAloD0MImSmtvyUGY0CUhpRSlGgVTegDaBZHQJJVY+GGmDV1fZQoaAZoCWgPQwg0Z33KsURhQJSGlFKUaBVN6ANoFkdAkl1/MW43FXV9lChoBmgJaA9DCCGQSxx521tAlIaUUpRoFU3oA2gWR0CSe63g1m8NdX2UKGgGaAloD0MITmTmAhdyYUCUhpRSlGgVTegDaBZHQJKAmmzjWCp1fZQoaAZoCWgPQwiwOnKkM2ZiQJSGlFKUaBVN6ANoFkdAkoIX4TK1X3V9lChoBmgJaA9DCMUcBB2tmipAlIaUUpRoFU0kAWgWR0CShSTGYKIBdX2UKGgGaAloD0MIaY6s/DJjXUCUhpRSlGgVTegDaBZHQJKH1JqZc9p1fZQoaAZoCWgPQwgIBaVo5bBkQJSGlFKUaBVN6ANoFkdAkok1sUIsy3V9lChoBmgJaA9DCPiL2ZJV615AlIaUUpRoFU3oA2gWR0CSjE2AoXsPdX2UKGgGaAloD0MILgPOUrI+ZUCUhpRSlGgVTegDaBZHQJKN22nbZe11fZQoaAZoCWgPQwidK0oJwSdiQJSGlFKUaBVN6ANoFkdAko4Jp35eq3V9lChoBmgJaA9DCKPqVzofnuo/lIaUUpRoFUvhaBZHQJKPNI5HVgB1fZQoaAZoCWgPQwikiXeAJxVhQJSGlFKUaBVN6ANoFkdAkqCAfyPMjnV9lChoBmgJaA9DCBxdpbvrkGNAlIaUUpRoFU3oA2gWR0CSoe9TP0I1dX2UKGgGaAloD0MIsBu2LUp2YkCUhpRSlGgVTegDaBZHQJKxFVCHARF1fZQoaAZoCWgPQwgxRbk0fkNbQJSGlFKUaBVN6ANoFkdAkrE95Y5ksnV9lChoBmgJaA9DCDtSfecXbVlAlIaUUpRoFU3oA2gWR0CSsX4n4O+adX2UKGgGaAloD0MIn47HDFQsb0CUhpRSlGgVTX8CaBZHQJKzrck+otN1fZQoaAZoCWgPQwhe91YkJq5fQJSGlFKUaBVN6ANoFkdAkrXbeyiVSnV9lChoBmgJaA9DCLmI78SsRGZAlIaUUpRoFU3oA2gWR0CSwJmr8zhxdX2UKGgGaAloD0MIKzV7oBWoKUCUhpRSlGgVS9hoFkdAksESqZML4XV9lChoBmgJaA9DCEHxY8xdix5AlIaUUpRoFU0BAWgWR0CSw7d2xIJ7dX2UKGgGaAloD0MIipC6nX0vY0CUhpRSlGgVTegDaBZHQJLDuiKziS91fZQoaAZoCWgPQwhdNc8R+SY2QJSGlFKUaBVNEwFoFkdAkuHDP8hs7HV9lChoBmgJaA9DCK6dKAmJsV5AlIaUUpRoFU3oA2gWR0CS5G9Ba9sadX2UKGgGaAloD0MIFqQZi6asVkCUhpRSlGgVTegDaBZHQJLqSW1MM7V1fZQoaAZoCWgPQwgapUv/EqRhQJSGlFKUaBVN6ANoFkdAkuu8Q2/BWXV9lChoBmgJaA9DCA/QfTkzbGRAlIaUUpRoFU3oA2gWR0CS7wxnWattdX2UKGgGaAloD0MI4X8r2bFxEMCUhpRSlGgVS/doFkdAku8O1fE4vXV9lChoBmgJaA9DCFERp5NsVUDAlIaUUpRoFUv4aBZHQJLvIawUxmF1fZQoaAZoCWgPQwgQ5+EEJjZhQJSGlFKUaBVN6ANoFkdAkvCKEnLJS3V9lChoBmgJaA9DCJg1scBXoFlAlIaUUpRoFU3oA2gWR0CS8LXVLBbfdX2UKGgGaAloD0MIz2irksjMY0CUhpRSlGgVTegDaBZHQJLxxcZ9/jN1fZQoaAZoCWgPQwjFrBdDOXtHwJSGlFKUaBVNQAJoFkdAkvLyfthNNHV9lChoBmgJaA9DCFvptdlYh0lAlIaUUpRoFUv7aBZHQJL9i6qbSZ11fZQoaAZoCWgPQwh1IVZ/BDFjQJSGlFKUaBVN6ANoFkdAkwAddE9dNXV9lChoBmgJaA9DCBIXgEZpzmJAlIaUUpRoFU3oA2gWR0CTAVLA57w8dX2UKGgGaAloD0MIl6yKcJNuUUCUhpRSlGgVTegDaBZHQJMUN/ustCl1fZQoaAZoCWgPQwj1g7pIoV1uQJSGlFKUaBVNFwJoFkdAkxeLkS26TXV9lChoBmgJaA9DCIV4JF6e/lpAlIaUUpRoFU3oA2gWR0CTHwnrIHTrdX2UKGgGaAloD0MIeqUsQxx8YECUhpRSlGgVTegDaBZHQJMfesCDEm91fZQoaAZoCWgPQwhtOgK42eZhQJSGlFKUaBVN6ANoFkdAk0BATIvJzXV9lChoBmgJaA9DCNRi8DDt8mNAlIaUUpRoFU3oA2gWR0CTQxmBvrGBdX2UKGgGaAloD0MI+5C3XP0gTUCUhpRSlGgVTegDaBZHQJNJT1lGwzN1fZQoaAZoCWgPQwjkLsIU5XIuQJSGlFKUaBVL5WgWR0CTSk15Sm65dX2UKGgGaAloD0MIlQ7W/7k1Y0CUhpRSlGgVTegDaBZHQJNKxqcmShd1fZQoaAZoCWgPQwgwZeCAFjZjQJSGlFKUaBVN6ANoFkdAk04Ks+3YtnV9lChoBmgJaA9DCC3SxDtAWGFAlIaUUpRoFU3oA2gWR0CTTgy/sVtXdX2UKGgGaAloD0MIri08LxUDX0CUhpRSlGgVTegDaBZHQJNPetdRiw11fZQoaAZoCWgPQwimuKrsO8NjQJSGlFKUaBVN6ANoFkdAk0+nEhq0t3V9lChoBmgJaA9DCGqiz0eZzmNAlIaUUpRoFU3oA2gWR0CTULxbSqlxdX2UKGgGaAloD0MIS1tc47NfY0CUhpRSlGgVTegDaBZHQJNdN8v24/h1fZQoaAZoCWgPQwi6n1OQH85iQJSGlFKUaBVN6ANoFkdAk1/HkYGdJHV9lChoBmgJaA9DCOV+h6JAYmJAlIaUUpRoFU3oA2gWR0CTYQfFrEcbdX2UKGgGaAloD0MILZW3I5xmOECUhpRSlGgVS81oFkdAk26zGtITXnV9lChoBmgJaA9DCIRIhhxbByTAlIaUUpRoFU0eAWgWR0CTcgfqoqCpdX2UKGgGaAloD0MIgO7Lme1gZECUhpRSlGgVTegDaBZHQJNzpJZntfJ1fZQoaAZoCWgPQwg6OxkcJZthQJSGlFKUaBVN6ANoFkdAk3bvrv9cbHV9lChoBmgJaA9DCCswZHWr7WJAlIaUUpRoFU3oA2gWR0CTfkBj4HopdX2UKGgGaAloD0MI1bSLaablYUCUhpRSlGgVTegDaBZHQJOEqlvZRKp1fZQoaAZoCWgPQwjpZRTLLTRmQJSGlFKUaBVN6ANoFkdAk6KtbX6InHV9lChoBmgJaA9DCD6w47/AOWhAlIaUUpRoFU3oA2gWR0CTqFt8uzyCdX2UKGgGaAloD0MIDThLyXKhYECUhpRSlGgVTegDaBZHQJOpQnF5v991fZQoaAZoCWgPQwjKG2DmO5VkQJSGlFKUaBVN6ANoFkdAk6mz3M6ikHV9lChoBmgJaA9DCKn1fqMdYGJAlIaUUpRoFU3oA2gWR0CTrKhd+ocadX2UKGgGaAloD0MIOKRRgZOpXkCUhpRSlGgVTegDaBZHQJOsqqxTsIF1fZQoaAZoCWgPQwgWFXE6yTZhQJSGlFKUaBVN6ANoFkdAk63rd30PH3V9lChoBmgJaA9DCCEE5EsoaGBAlIaUUpRoFU3oA2gWR0CTrhTbWVeKdX2UKGgGaAloD0MIB7ZKsDg1YkCUhpRSlGgVTegDaBZHQJOvCCHymQ91fZQoaAZoCWgPQwhrgT0mUlofQJSGlFKUaBVNAgFoFkdAk7gCZ8a4t3V9lChoBmgJaA9DCNmxEYjX9dm/lIaUUpRoFUvZaBZHQJO6PX4CZF51fZQoaAZoCWgPQwiHiJtTybQxQJSGlFKUaBVL3GgWR0CTukAAyVOcdX2UKGgGaAloD0MIS3UBL7MYa0CUhpRSlGgVTbMCaBZHQJO9oHB1s+F1fZQoaAZoCWgPQwigVPt0POBkQJSGlFKUaBVN6ANoFkdAk75tB8hLXnV9lChoBmgJaA9DCP2hmSdXQWFAlIaUUpRoFU3oA2gWR0CTyq59E1EWdX2UKGgGaAloD0MIQBcNGY+yLECUhpRSlGgVTQEBaBZHQJPLGAvtdAx1fZQoaAZoCWgPQwiqm4u/bZBmQJSGlFKUaBVN6ANoFkdAk82Tfek563V9lChoBmgJaA9DCDD0iNFz6FpAlIaUUpRoFU3oA2gWR0CTzv3Roh6jdX2UKGgGaAloD0MIwAZEiCvKXkCUhpRSlGgVTegDaBZHQJPZHH4oJAt1fZQoaAZoCWgPQwhKCiyAKa83QJSGlFKUaBVLymgWR0CT20ahHskZdX2UKGgGaAloD0MIyqZc4V1XXUCUhpRSlGgVTegDaBZHQJPfwi1RceN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 140,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
baseline_1k/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df2bf8fdd56638374227cfa57b6eeab4679c1d06f257fce6b3123d734ac906c
|
3 |
+
size 84829
|
baseline_1k/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccea33361ea0f287e4c756a650ee9e05e85118ceee6ee97535604a0504450c04
|
3 |
+
size 43201
|
baseline_1k/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
baseline_1k/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2be1393cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2be1393d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2be1393dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2be1393e60>", "_build": "<function ActorCriticPolicy._build at 0x7f2be1393ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2be1393f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2be139a050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2be139a0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2be139a170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2be139a200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2be139a290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2be13d3ed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 512000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652171755.8090763, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb5RL32hDm6jVh7OZfMJTT8Kk67lKaQuAAAgD8AAIA/msqzvMMhdLoOBzk6eVoVNl0ekrpebVW5AACAPwAAgD+9gq0+nbM/P7Tds740c8m+soIXPo2MdL4AAAAAAAAAAMBf5L17Pqe67ZXXOs1puzXehW46DYz2uQAAgD8AAIA/U/Efvq7Hkjd2kHo8a6RmvO/fFjo41E08AAAAAAAAAADaD/q9j7oQuqbyNjp1agA3rywHO/sGV7kAAIA/AACAP+Ycfr1SAMW5XoR3O4YnPzjKsc065lYYuAAAgD8AAIA/Rq6sPt0KvD5CYhO+bcykvi9cgz3sbZK9AAAAAAAAAABNc0i9wOOIPwLJ6r1nmMW+S0aIvQGWgL0AAAAAAAAAAMDvlD1cb3u66vVMOvFnBTWNqTK7gqNuuQAAgD8AAIA/Gkc+vRQ4mbrAvSO4/jI1s9aQwzo6/zs3AACAPwAAgD8A5mm99vwnum0c6zpiAUy128zHuvMUCLoAAIA/AACAP5pdNT1SQKm5FmxTuYs8XrSTLlm6Fdt2OAAAgD8AAIA/s7OtvSnoYbrGml07zVLitRStUrsl9H66AACAPwAAAADNqFM8e76KuvP+1Ds6yMA4qkTSOo77DLoAAIA/AACAPw5Alr49iDQ8okQZOSV9O7f2GaO9GG0vuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Ggc6vfxZkCUhpRSlIwBbJRN6AOMAXSUR0CR6+KAJ9iMdX2UKGgGaAloD0MIRs8tdCWwU0CUhpRSlGgVTegDaBZHQJHsHx6OYIB1fZQoaAZoCWgPQwhCzvv/uAxgQJSGlFKUaBVN6ANoFkdAkfBrhR64UnV9lChoBmgJaA9DCECjdOlfRGFAlIaUUpRoFU3oA2gWR0CR8x9ZzPrwdX2UKGgGaAloD0MIs34zMV2mYECUhpRSlGgVTegDaBZHQJH6h6MR6GB1fZQoaAZoCWgPQwhjfJi97BJiQJSGlFKUaBVN6ANoFkdAkhhzZxrBTHV9lChoBmgJaA9DCHNJ1XYTiF9AlIaUUpRoFU3oA2gWR0CSHSZYPoV3dX2UKGgGaAloD0MIp86j4n/QYUCUhpRSlGgVTegDaBZHQJIeocJdB0J1fZQoaAZoCWgPQwjirl5FRjhhQJSGlFKUaBVN6ANoFkdAkiRgP7N0NnV9lChoBmgJaA9DCEaXN4dro1tAlIaUUpRoFU3oA2gWR0CSJcLv1DjSdX2UKGgGaAloD0MIQfLOoQzfW0CUhpRSlGgVTegDaBZHQJIo3NyHVPN1fZQoaAZoCWgPQwh0m3CvTO9iQJSGlFKUaBVN6ANoFkdAkipawdKdx3V9lChoBmgJaA9DCBiZgF8jjWVAlIaUUpRoFU3oA2gWR0CSKoamGdqddX2UKGgGaAloD0MIE7h1N0+bYUCUhpRSlGgVTegDaBZHQJI8zyiEg4h1fZQoaAZoCWgPQwj6KCMuAI9eQJSGlFKUaBVN6ANoFkdAkj4916mfoXV9lChoBmgJaA9DCPd4IR0eaWJAlIaUUpRoFU3oA2gWR0CSTXIYWLxadX2UKGgGaAloD0MIkkHuIsxAYkCUhpRSlGgVTegDaBZHQJJNmUkfLcN1fZQoaAZoCWgPQwhLH7qgvq9lQJSGlFKUaBVN6ANoFkdAkk3eUY8+zXV9lChoBmgJaA9DCBlxAWiULmVAlIaUUpRoFU3oA2gWR0CSUmpb2USqdX2UKGgGaAloD0MImSmtvyUGY0CUhpRSlGgVTegDaBZHQJJVY+GGmDV1fZQoaAZoCWgPQwg0Z33KsURhQJSGlFKUaBVN6ANoFkdAkl1/MW43FXV9lChoBmgJaA9DCCGQSxx521tAlIaUUpRoFU3oA2gWR0CSe63g1m8NdX2UKGgGaAloD0MITmTmAhdyYUCUhpRSlGgVTegDaBZHQJKAmmzjWCp1fZQoaAZoCWgPQwiwOnKkM2ZiQJSGlFKUaBVN6ANoFkdAkoIX4TK1X3V9lChoBmgJaA9DCMUcBB2tmipAlIaUUpRoFU0kAWgWR0CShSTGYKIBdX2UKGgGaAloD0MIaY6s/DJjXUCUhpRSlGgVTegDaBZHQJKH1JqZc9p1fZQoaAZoCWgPQwgIBaVo5bBkQJSGlFKUaBVN6ANoFkdAkok1sUIsy3V9lChoBmgJaA9DCPiL2ZJV615AlIaUUpRoFU3oA2gWR0CSjE2AoXsPdX2UKGgGaAloD0MILgPOUrI+ZUCUhpRSlGgVTegDaBZHQJKN22nbZe11fZQoaAZoCWgPQwidK0oJwSdiQJSGlFKUaBVN6ANoFkdAko4Jp35eq3V9lChoBmgJaA9DCKPqVzofnuo/lIaUUpRoFUvhaBZHQJKPNI5HVgB1fZQoaAZoCWgPQwikiXeAJxVhQJSGlFKUaBVN6ANoFkdAkqCAfyPMjnV9lChoBmgJaA9DCBxdpbvrkGNAlIaUUpRoFU3oA2gWR0CSoe9TP0I1dX2UKGgGaAloD0MIsBu2LUp2YkCUhpRSlGgVTegDaBZHQJKxFVCHARF1fZQoaAZoCWgPQwgxRbk0fkNbQJSGlFKUaBVN6ANoFkdAkrE95Y5ksnV9lChoBmgJaA9DCDtSfecXbVlAlIaUUpRoFU3oA2gWR0CSsX4n4O+adX2UKGgGaAloD0MIn47HDFQsb0CUhpRSlGgVTX8CaBZHQJKzrck+otN1fZQoaAZoCWgPQwhe91YkJq5fQJSGlFKUaBVN6ANoFkdAkrXbeyiVSnV9lChoBmgJaA9DCLmI78SsRGZAlIaUUpRoFU3oA2gWR0CSwJmr8zhxdX2UKGgGaAloD0MIKzV7oBWoKUCUhpRSlGgVS9hoFkdAksESqZML4XV9lChoBmgJaA9DCEHxY8xdix5AlIaUUpRoFU0BAWgWR0CSw7d2xIJ7dX2UKGgGaAloD0MIipC6nX0vY0CUhpRSlGgVTegDaBZHQJLDuiKziS91fZQoaAZoCWgPQwhdNc8R+SY2QJSGlFKUaBVNEwFoFkdAkuHDP8hs7HV9lChoBmgJaA9DCK6dKAmJsV5AlIaUUpRoFU3oA2gWR0CS5G9Ba9sadX2UKGgGaAloD0MIFqQZi6asVkCUhpRSlGgVTegDaBZHQJLqSW1MM7V1fZQoaAZoCWgPQwgapUv/EqRhQJSGlFKUaBVN6ANoFkdAkuu8Q2/BWXV9lChoBmgJaA9DCA/QfTkzbGRAlIaUUpRoFU3oA2gWR0CS7wxnWattdX2UKGgGaAloD0MI4X8r2bFxEMCUhpRSlGgVS/doFkdAku8O1fE4vXV9lChoBmgJaA9DCFERp5NsVUDAlIaUUpRoFUv4aBZHQJLvIawUxmF1fZQoaAZoCWgPQwgQ5+EEJjZhQJSGlFKUaBVN6ANoFkdAkvCKEnLJS3V9lChoBmgJaA9DCJg1scBXoFlAlIaUUpRoFU3oA2gWR0CS8LXVLBbfdX2UKGgGaAloD0MIz2irksjMY0CUhpRSlGgVTegDaBZHQJLxxcZ9/jN1fZQoaAZoCWgPQwjFrBdDOXtHwJSGlFKUaBVNQAJoFkdAkvLyfthNNHV9lChoBmgJaA9DCFvptdlYh0lAlIaUUpRoFUv7aBZHQJL9i6qbSZ11fZQoaAZoCWgPQwh1IVZ/BDFjQJSGlFKUaBVN6ANoFkdAkwAddE9dNXV9lChoBmgJaA9DCBIXgEZpzmJAlIaUUpRoFU3oA2gWR0CTAVLA57w8dX2UKGgGaAloD0MIl6yKcJNuUUCUhpRSlGgVTegDaBZHQJMUN/ustCl1fZQoaAZoCWgPQwj1g7pIoV1uQJSGlFKUaBVNFwJoFkdAkxeLkS26TXV9lChoBmgJaA9DCIV4JF6e/lpAlIaUUpRoFU3oA2gWR0CTHwnrIHTrdX2UKGgGaAloD0MIeqUsQxx8YECUhpRSlGgVTegDaBZHQJMfesCDEm91fZQoaAZoCWgPQwhtOgK42eZhQJSGlFKUaBVN6ANoFkdAk0BATIvJzXV9lChoBmgJaA9DCNRi8DDt8mNAlIaUUpRoFU3oA2gWR0CTQxmBvrGBdX2UKGgGaAloD0MI+5C3XP0gTUCUhpRSlGgVTegDaBZHQJNJT1lGwzN1fZQoaAZoCWgPQwjkLsIU5XIuQJSGlFKUaBVL5WgWR0CTSk15Sm65dX2UKGgGaAloD0MIlQ7W/7k1Y0CUhpRSlGgVTegDaBZHQJNKxqcmShd1fZQoaAZoCWgPQwgwZeCAFjZjQJSGlFKUaBVN6ANoFkdAk04Ks+3YtnV9lChoBmgJaA9DCC3SxDtAWGFAlIaUUpRoFU3oA2gWR0CTTgy/sVtXdX2UKGgGaAloD0MIri08LxUDX0CUhpRSlGgVTegDaBZHQJNPetdRiw11fZQoaAZoCWgPQwimuKrsO8NjQJSGlFKUaBVN6ANoFkdAk0+nEhq0t3V9lChoBmgJaA9DCGqiz0eZzmNAlIaUUpRoFU3oA2gWR0CTULxbSqlxdX2UKGgGaAloD0MIS1tc47NfY0CUhpRSlGgVTegDaBZHQJNdN8v24/h1fZQoaAZoCWgPQwi6n1OQH85iQJSGlFKUaBVN6ANoFkdAk1/HkYGdJHV9lChoBmgJaA9DCOV+h6JAYmJAlIaUUpRoFU3oA2gWR0CTYQfFrEcbdX2UKGgGaAloD0MILZW3I5xmOECUhpRSlGgVS81oFkdAk26zGtITXnV9lChoBmgJaA9DCIRIhhxbByTAlIaUUpRoFU0eAWgWR0CTcgfqoqCpdX2UKGgGaAloD0MIgO7Lme1gZECUhpRSlGgVTegDaBZHQJNzpJZntfJ1fZQoaAZoCWgPQwg6OxkcJZthQJSGlFKUaBVN6ANoFkdAk3bvrv9cbHV9lChoBmgJaA9DCCswZHWr7WJAlIaUUpRoFU3oA2gWR0CTfkBj4HopdX2UKGgGaAloD0MI1bSLaablYUCUhpRSlGgVTegDaBZHQJOEqlvZRKp1fZQoaAZoCWgPQwjpZRTLLTRmQJSGlFKUaBVN6ANoFkdAk6KtbX6InHV9lChoBmgJaA9DCD6w47/AOWhAlIaUUpRoFU3oA2gWR0CTqFt8uzyCdX2UKGgGaAloD0MIDThLyXKhYECUhpRSlGgVTegDaBZHQJOpQnF5v991fZQoaAZoCWgPQwjKG2DmO5VkQJSGlFKUaBVN6ANoFkdAk6mz3M6ikHV9lChoBmgJaA9DCKn1fqMdYGJAlIaUUpRoFU3oA2gWR0CTrKhd+ocadX2UKGgGaAloD0MIOKRRgZOpXkCUhpRSlGgVTegDaBZHQJOsqqxTsIF1fZQoaAZoCWgPQwgWFXE6yTZhQJSGlFKUaBVN6ANoFkdAk63rd30PH3V9lChoBmgJaA9DCCEE5EsoaGBAlIaUUpRoFU3oA2gWR0CTrhTbWVeKdX2UKGgGaAloD0MIB7ZKsDg1YkCUhpRSlGgVTegDaBZHQJOvCCHymQ91fZQoaAZoCWgPQwhrgT0mUlofQJSGlFKUaBVNAgFoFkdAk7gCZ8a4t3V9lChoBmgJaA9DCNmxEYjX9dm/lIaUUpRoFUvZaBZHQJO6PX4CZF51fZQoaAZoCWgPQwiHiJtTybQxQJSGlFKUaBVL3GgWR0CTukAAyVOcdX2UKGgGaAloD0MIS3UBL7MYa0CUhpRSlGgVTbMCaBZHQJO9oHB1s+F1fZQoaAZoCWgPQwigVPt0POBkQJSGlFKUaBVN6ANoFkdAk75tB8hLXnV9lChoBmgJaA9DCP2hmSdXQWFAlIaUUpRoFU3oA2gWR0CTyq59E1EWdX2UKGgGaAloD0MIQBcNGY+yLECUhpRSlGgVTQEBaBZHQJPLGAvtdAx1fZQoaAZoCWgPQwiqm4u/bZBmQJSGlFKUaBVN6ANoFkdAk82Tfek563V9lChoBmgJaA9DCDD0iNFz6FpAlIaUUpRoFU3oA2gWR0CTzv3Roh6jdX2UKGgGaAloD0MIwAZEiCvKXkCUhpRSlGgVTegDaBZHQJPZHH4oJAt1fZQoaAZoCWgPQwhKCiyAKa83QJSGlFKUaBVLymgWR0CT20ahHskZdX2UKGgGaAloD0MIyqZc4V1XXUCUhpRSlGgVTegDaBZHQJPfwi1RceN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 140, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13fca9a4aaff97a3ce2e2dca87efdef4331aa6c96eb2411395b551838371cfc5
|
3 |
+
size 261360
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 243.42799649727232, "std_reward": 22.54883789340839, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T08:56:59.052129"}
|