meltembreeze commited on
Commit
279de6c
1 Parent(s): 9347866

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.52 +/- 13.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4d9f98820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4d9f988b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4d9f98940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4d9f989d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb4d9f98a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4d9f98af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4d9f98b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4d9f98c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4d9f98ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4d9f98d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4d9f98dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4d9f98e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb4d9f999c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678374536068096316, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0VJT4yeKM/oABUPkE6l753WAA+RuMLvQAAAAAAAAAAmj8mvuzVXD/l16s+k/epvguOsj0yowE+AAAAAAAAAAAAOpY8SMmWuqVW3raCnuKxJtoPu9S6ADYAAIA/AACAP8ABwr3DxxC8VVXWu8UxqjyMYoa9ihyMPQAAAAAAAIA/Oo6bPkdaUD99ha88z/PXvhILzT4zFc69AAAAAAAAAABmyti8uMb6uW0Bbzr1p1o1LvG0utdWirkAAIA/AACAP5rg/Tw4IeG7FmG6O2e9zDxC4Da9opOpPQAAgD8AAIA/gPQCPh8Ayrvm7aI9V6sXPJETGL3Otf88AAAAAAAAgD/mbDq9CuAqu2suxLl6loI8/UudPJOvYb0AAIA/AACAP5pjoryvghY/bnniPb5Fhb5k7Vs9oIMfPQAAAAAAAAAAzTgzvfacTrrLoZq5I6ouNtn7gjkrQ7U4AACAPwAAgD/NsEk87uCSvFcWBbzPhxY96oMDPp456b0AAIA/AACAP00eCT2jvwE9eoclvlyKir5FalO9qGUnvQAAAAAAAAAA9rKsPlc8bT++xWe9G3a7vpUSjj6qyEi+AAAAAAAAAAAAIoG8XDNduq23ArWMjF+wPk1DO55+ZzQAAIA/AACAP4BfKD1bt5m8BDs4POalfj3QOsw9rmGBvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9wX0wp0DcUCUhpRSlIwBbJRNOwKMAXSUR0CWkfDMvAXVdX2UKGgGaAloD0MIomDGFKwvb0CUhpRSlGgVTYsCaBZHQJarMdQwbl11fZQoaAZoCWgPQwgZraOqCWZjQJSGlFKUaBVN6ANoFkdAlqwnUtqYZ3V9lChoBmgJaA9DCEoH6//cSXFAlIaUUpRoFU1OA2gWR0CWrOZV4oqkdX2UKGgGaAloD0MIoaLqV7qGYECUhpRSlGgVTegDaBZHQJataPJaJRB1fZQoaAZoCWgPQwjnjZPCPMpkQJSGlFKUaBVN6ANoFkdAlq2gu27Wd3V9lChoBmgJaA9DCB6NQ/3uwXBAlIaUUpRoFU0lA2gWR0CWrcobXHzZdX2UKGgGaAloD0MIK4cW2c4aYUCUhpRSlGgVTegDaBZHQJax8yCWeH11fZQoaAZoCWgPQwhxAP2+f+VwQJSGlFKUaBVNiQNoFkdAlrMTZxrBTHV9lChoBmgJaA9DCGRccXFUkFNAlIaUUpRoFUvPaBZHQJa1wka/ATJ1fZQoaAZoCWgPQwjAXmHB/SQ6QJSGlFKUaBVNEwFoFkdAlrdRHG0eEXV9lChoBmgJaA9DCD7NyYvMe25AlIaUUpRoFU3KA2gWR0CWus9roGILdX2UKGgGaAloD0MI2ozTEFU8VUCUhpRSlGgVTQUBaBZHQJa9UljVhCt1fZQoaAZoCWgPQwjWH2EYcFdxQJSGlFKUaBVNiQFoFkdAlr3GseXAunV9lChoBmgJaA9DCOyGbYtyXnJAlIaUUpRoFU2TAWgWR0CWvwFi8WbgdX2UKGgGaAloD0MINjrnpzi6X0CUhpRSlGgVTegDaBZHQJbCEJUo8ZF1fZQoaAZoCWgPQwjmkxXDVehhQJSGlFKUaBVN6ANoFkdAlsJaxC6YmnV9lChoBmgJaA9DCLyxoDAogyVAlIaUUpRoFUv2aBZHQJbEOkIomXx1fZQoaAZoCWgPQwiocASpFCpkQJSGlFKUaBVN6ANoFkdAlsZMjAzpHXV9lChoBmgJaA9DCO/GgsIgSG9AlIaUUpRoFU3WAmgWR0CWxsc94eLfdX2UKGgGaAloD0MI8l61MmHrbkCUhpRSlGgVTRwCaBZHQJbHZHvttyh1fZQoaAZoCWgPQwh1kUJZeNdwQJSGlFKUaBVNgAJoFkdAlsnKh11W83V9lChoBmgJaA9DCHXHYptUD2hAlIaUUpRoFU3oA2gWR0CWzFzyjHn2dX2UKGgGaAloD0MILJrOToZVb0CUhpRSlGgVTTwDaBZHQJbNgvXbudB1fZQoaAZoCWgPQwghdqbQ+dNwQJSGlFKUaBVNHAJoFkdAls7DhgmZ3XV9lChoBmgJaA9DCA+4rpiRC2ZAlIaUUpRoFU3oA2gWR0CW0BQokRjCdX2UKGgGaAloD0MI/8u1aMGucUCUhpRSlGgVTYQBaBZHQJbQHq1PWQR1fZQoaAZoCWgPQwjOGryvysNsQJSGlFKUaBVNvwFoFkdAltXA7xNIsnV9lChoBmgJaA9DCOqWHeIfJihAlIaUUpRoFUv4aBZHQJbXg0tRNyp1fZQoaAZoCWgPQwhMUS6NX6luQJSGlFKUaBVNBAJoFkdAltgKXa8HwHV9lChoBmgJaA9DCJrudVLfLXFAlIaUUpRoFU2AAWgWR0CW2NavA44qdX2UKGgGaAloD0MI1GLwMK0KcECUhpRSlGgVTYABaBZHQJbZL5oGpuN1fZQoaAZoCWgPQwj1geSdQ3NwQJSGlFKUaBVNhgFoFkdAlu4Zt78ejnV9lChoBmgJaA9DCDPeVnotYXJAlIaUUpRoFU1fAWgWR0CW8Aomois5dX2UKGgGaAloD0MICrlSz0IPckCUhpRSlGgVTU8BaBZHQJbwswYcebN1fZQoaAZoCWgPQwiRm+EGPAhxQJSGlFKUaBVNSANoFkdAlvDFKkEcKnV9lChoBmgJaA9DCO27IvifuXJAlIaUUpRoFU1jAWgWR0CW8W2OhkAhdX2UKGgGaAloD0MIAYqRJTNNcECUhpRSlGgVTcYCaBZHQJb2bnDBMzx1fZQoaAZoCWgPQwjohTsXxqBwQJSGlFKUaBVNOAJoFkdAlvexOgxrSHV9lChoBmgJaA9DCHGvzFs1L3FAlIaUUpRoFU1oAWgWR0CW+OIgeRxMdX2UKGgGaAloD0MI+aBns2rFcECUhpRSlGgVTbABaBZHQJb64dvKlpJ1fZQoaAZoCWgPQwhUOlj/555DQJSGlFKUaBVL+2gWR0CW+/s1sLv1dX2UKGgGaAloD0MIXwfOGdF5cECUhpRSlGgVTXsBaBZHQJb8CtPpIMB1fZQoaAZoCWgPQwi3DaMg+FRwQJSGlFKUaBVNkQFoFkdAlvy/MOf/WHV9lChoBmgJaA9DCERN9PkoLHBAlIaUUpRoFU2LA2gWR0CW/0XlKbrkdX2UKGgGaAloD0MIqOMxA5ViZkCUhpRSlGgVTegDaBZHQJb/lSde6Zp1fZQoaAZoCWgPQwjCFrt91hlwQJSGlFKUaBVNZgFoFkdAlwJeTzND+nV9lChoBmgJaA9DCJ3y6EZYu2RAlIaUUpRoFU3oA2gWR0CXA771Iy0sdX2UKGgGaAloD0MIBRcrajC9QkCUhpRSlGgVTRkBaBZHQJcGYh/y5I91fZQoaAZoCWgPQwjLZg5J7YpwQJSGlFKUaBVN5QFoFkdAlwbp4rz5GnV9lChoBmgJaA9DCFPNrKWANW5AlIaUUpRoFU2JAmgWR0CXCHqk/KQrdX2UKGgGaAloD0MIsOdrlsswYUCUhpRSlGgVTegDaBZHQJcIleXzDoB1fZQoaAZoCWgPQwj1K50Pz0BwQJSGlFKUaBVNSgJoFkdAlwlx02cawXV9lChoBmgJaA9DCM7/q46ci3BAlIaUUpRoFU1dAWgWR0CXC74s3AEddX2UKGgGaAloD0MICklm9Y5gcECUhpRSlGgVTWYBaBZHQJcQZG6PKdR1fZQoaAZoCWgPQwinBprPudRvQJSGlFKUaBVNjQJoFkdAlxkbfcer/HV9lChoBmgJaA9DCHDvGvSlL29AlIaUUpRoFU2oAmgWR0CXL/DqW1MNdX2UKGgGaAloD0MIfH4YIbwwcECUhpRSlGgVTQ4CaBZHQJcwAal1r7B1fZQoaAZoCWgPQwiu2cpLfoVwQJSGlFKUaBVNuAFoFkdAlzGOg13t8nV9lChoBmgJaA9DCOuQm+EG6kpAlIaUUpRoFU0cAWgWR0CXMght+CsfdX2UKGgGaAloD0MIRga5i3CwcECUhpRSlGgVTcYCaBZHQJcylg6U7jl1fZQoaAZoCWgPQwhozvqU47hwQJSGlFKUaBVNkgJoFkdAlzKjWwu/UXV9lChoBmgJaA9DCOlJmdRQt21AlIaUUpRoFU0SAmgWR0CXMzF5OafBdX2UKGgGaAloD0MIsMvwny5VcUCUhpRSlGgVTe8BaBZHQJczZIAfdRB1fZQoaAZoCWgPQwi7mdGPhgxlQJSGlFKUaBVN6ANoFkdAlzPPXwsoUnV9lChoBmgJaA9DCHXkSGdgum9AlIaUUpRoFU3NAWgWR0CXNXD4xk/bdX2UKGgGaAloD0MIwaikToDScUCUhpRSlGgVTTEDaBZHQJc2azVtoBd1fZQoaAZoCWgPQwi2EyUhUQBxQJSGlFKUaBVNlQNoFkdAlzaSvxH5J3V9lChoBmgJaA9DCCf1ZWknanFAlIaUUpRoFU1gAmgWR0CXNrKYAsCldX2UKGgGaAloD0MIoPzdO+oqb0CUhpRSlGgVTTgDaBZHQJc71Wn0kGB1fZQoaAZoCWgPQwiGrG71HDRwQJSGlFKUaBVNAwNoFkdAlz/1+d9Uj3V9lChoBmgJaA9DCK/OMSB7MXBAlIaUUpRoFU1YAWgWR0CXQG60IC2ddX2UKGgGaAloD0MImrLTD2rtb0CUhpRSlGgVTU8BaBZHQJdBjMvAXVN1fZQoaAZoCWgPQwhD5PT1vOFwQJSGlFKUaBVNTQFoFkdAl0NTqrzXjHV9lChoBmgJaA9DCIRnQpPElnFAlIaUUpRoFU1mAWgWR0CXQ1SNwR5DdX2UKGgGaAloD0MI/vLJiuGgckCUhpRSlGgVTY4BaBZHQJdDj++/QBx1fZQoaAZoCWgPQwh2jZYDPf5tQJSGlFKUaBVNgwFoFkdAl0TWy1NQCXV9lChoBmgJaA9DCLIN3IF6nXJAlIaUUpRoFU2DAWgWR0CXRUcNYr8SdX2UKGgGaAloD0MI0R4vpAPFckCUhpRSlGgVTUUBaBZHQJdGMXWOIZZ1fZQoaAZoCWgPQwiKBil4CsltQJSGlFKUaBVNmwFoFkdAl0aXbItDlnV9lChoBmgJaA9DCOaV620znnFAlIaUUpRoFU1tAWgWR0CXR1gy/KyOdX2UKGgGaAloD0MIDvlnBrEUcECUhpRSlGgVTXIBaBZHQJdHYBBAv+R1fZQoaAZoCWgPQwh9sIwNXeduQJSGlFKUaBVNmgFoFkdAl0fBqGlANXV9lChoBmgJaA9DCIEmwoanHnBAlIaUUpRoFU3lAWgWR0CXSAtNi6QOdX2UKGgGaAloD0MIyo0ia422cECUhpRSlGgVTTYBaBZHQJdJXcdo3711fZQoaAZoCWgPQwjuzATDuRptQJSGlFKUaBVNmwJoFkdAl0l/GyX2NHV9lChoBmgJaA9DCMTqjzBMs3BAlIaUUpRoFU1GAWgWR0CXTLbyH2ytdX2UKGgGaAloD0MI6dZrelCdcUCUhpRSlGgVTUEBaBZHQJdNuur6tT11fZQoaAZoCWgPQwgJUb6gRStxQJSGlFKUaBVNggFoFkdAl04gkHD77HV9lChoBmgJaA9DCMQkXMijW29AlIaUUpRoFU1ZAWgWR0CXTq0YTCcgdX2UKGgGaAloD0MIdopVg7CicECUhpRSlGgVTV0BaBZHQJdO/Ud7v5R1fZQoaAZoCWgPQwgZjBGJQqdHQJSGlFKUaBVL5WgWR0CXTw46fapQdX2UKGgGaAloD0MIi8ba31nucUCUhpRSlGgVTUYBaBZHQJdPS+8Gs3h1fZQoaAZoCWgPQwjzcW2oGHlvQJSGlFKUaBVNPQFoFkdAl1Awmu1WsHV9lChoBmgJaA9DCOhqK/YXiG1AlIaUUpRoFU1hAWgWR0CXUIGGVRk3dX2UKGgGaAloD0MIKLhYUYPObUCUhpRSlGgVTRECaBZHQJdTB0HQhOh1fZQoaAZoCWgPQwgFM6ZgjeJxQJSGlFKUaBVNPgFoFkdAl1QBdUsFuHV9lChoBmgJaA9DCKsGYW43C3FAlIaUUpRoFU1XAWgWR0CXVLlZ5iVjdX2UKGgGaAloD0MIlYCYhMtEcUCUhpRSlGgVTZcBaBZHQJdVLtJFspJ1fZQoaAZoCWgPQwi3ek56n3FyQJSGlFKUaBVNxwFoFkdAl1Xw7kn1F3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0abdbad6767dff4e42c404fee35eef1a57469d3595940cd0db5be03f8a1a6b4
3
+ size 147425
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4d9f98820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4d9f988b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4d9f98940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4d9f989d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb4d9f98a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb4d9f98af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4d9f98b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4d9f98c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb4d9f98ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4d9f98d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4d9f98dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4d9f98e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb4d9f999c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678374536068096316,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0VJT4yeKM/oABUPkE6l753WAA+RuMLvQAAAAAAAAAAmj8mvuzVXD/l16s+k/epvguOsj0yowE+AAAAAAAAAAAAOpY8SMmWuqVW3raCnuKxJtoPu9S6ADYAAIA/AACAP8ABwr3DxxC8VVXWu8UxqjyMYoa9ihyMPQAAAAAAAIA/Oo6bPkdaUD99ha88z/PXvhILzT4zFc69AAAAAAAAAABmyti8uMb6uW0Bbzr1p1o1LvG0utdWirkAAIA/AACAP5rg/Tw4IeG7FmG6O2e9zDxC4Da9opOpPQAAgD8AAIA/gPQCPh8Ayrvm7aI9V6sXPJETGL3Otf88AAAAAAAAgD/mbDq9CuAqu2suxLl6loI8/UudPJOvYb0AAIA/AACAP5pjoryvghY/bnniPb5Fhb5k7Vs9oIMfPQAAAAAAAAAAzTgzvfacTrrLoZq5I6ouNtn7gjkrQ7U4AACAPwAAgD/NsEk87uCSvFcWBbzPhxY96oMDPp456b0AAIA/AACAP00eCT2jvwE9eoclvlyKir5FalO9qGUnvQAAAAAAAAAA9rKsPlc8bT++xWe9G3a7vpUSjj6qyEi+AAAAAAAAAAAAIoG8XDNduq23ArWMjF+wPk1DO55+ZzQAAIA/AACAP4BfKD1bt5m8BDs4POalfj3QOsw9rmGBvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9wX0wp0DcUCUhpRSlIwBbJRNOwKMAXSUR0CWkfDMvAXVdX2UKGgGaAloD0MIomDGFKwvb0CUhpRSlGgVTYsCaBZHQJarMdQwbl11fZQoaAZoCWgPQwgZraOqCWZjQJSGlFKUaBVN6ANoFkdAlqwnUtqYZ3V9lChoBmgJaA9DCEoH6//cSXFAlIaUUpRoFU1OA2gWR0CWrOZV4oqkdX2UKGgGaAloD0MIoaLqV7qGYECUhpRSlGgVTegDaBZHQJataPJaJRB1fZQoaAZoCWgPQwjnjZPCPMpkQJSGlFKUaBVN6ANoFkdAlq2gu27Wd3V9lChoBmgJaA9DCB6NQ/3uwXBAlIaUUpRoFU0lA2gWR0CWrcobXHzZdX2UKGgGaAloD0MIK4cW2c4aYUCUhpRSlGgVTegDaBZHQJax8yCWeH11fZQoaAZoCWgPQwhxAP2+f+VwQJSGlFKUaBVNiQNoFkdAlrMTZxrBTHV9lChoBmgJaA9DCGRccXFUkFNAlIaUUpRoFUvPaBZHQJa1wka/ATJ1fZQoaAZoCWgPQwjAXmHB/SQ6QJSGlFKUaBVNEwFoFkdAlrdRHG0eEXV9lChoBmgJaA9DCD7NyYvMe25AlIaUUpRoFU3KA2gWR0CWus9roGILdX2UKGgGaAloD0MI2ozTEFU8VUCUhpRSlGgVTQUBaBZHQJa9UljVhCt1fZQoaAZoCWgPQwjWH2EYcFdxQJSGlFKUaBVNiQFoFkdAlr3GseXAunV9lChoBmgJaA9DCOyGbYtyXnJAlIaUUpRoFU2TAWgWR0CWvwFi8WbgdX2UKGgGaAloD0MINjrnpzi6X0CUhpRSlGgVTegDaBZHQJbCEJUo8ZF1fZQoaAZoCWgPQwjmkxXDVehhQJSGlFKUaBVN6ANoFkdAlsJaxC6YmnV9lChoBmgJaA9DCLyxoDAogyVAlIaUUpRoFUv2aBZHQJbEOkIomXx1fZQoaAZoCWgPQwiocASpFCpkQJSGlFKUaBVN6ANoFkdAlsZMjAzpHXV9lChoBmgJaA9DCO/GgsIgSG9AlIaUUpRoFU3WAmgWR0CWxsc94eLfdX2UKGgGaAloD0MI8l61MmHrbkCUhpRSlGgVTRwCaBZHQJbHZHvttyh1fZQoaAZoCWgPQwh1kUJZeNdwQJSGlFKUaBVNgAJoFkdAlsnKh11W83V9lChoBmgJaA9DCHXHYptUD2hAlIaUUpRoFU3oA2gWR0CWzFzyjHn2dX2UKGgGaAloD0MILJrOToZVb0CUhpRSlGgVTTwDaBZHQJbNgvXbudB1fZQoaAZoCWgPQwghdqbQ+dNwQJSGlFKUaBVNHAJoFkdAls7DhgmZ3XV9lChoBmgJaA9DCA+4rpiRC2ZAlIaUUpRoFU3oA2gWR0CW0BQokRjCdX2UKGgGaAloD0MI/8u1aMGucUCUhpRSlGgVTYQBaBZHQJbQHq1PWQR1fZQoaAZoCWgPQwjOGryvysNsQJSGlFKUaBVNvwFoFkdAltXA7xNIsnV9lChoBmgJaA9DCOqWHeIfJihAlIaUUpRoFUv4aBZHQJbXg0tRNyp1fZQoaAZoCWgPQwhMUS6NX6luQJSGlFKUaBVNBAJoFkdAltgKXa8HwHV9lChoBmgJaA9DCJrudVLfLXFAlIaUUpRoFU2AAWgWR0CW2NavA44qdX2UKGgGaAloD0MI1GLwMK0KcECUhpRSlGgVTYABaBZHQJbZL5oGpuN1fZQoaAZoCWgPQwj1geSdQ3NwQJSGlFKUaBVNhgFoFkdAlu4Zt78ejnV9lChoBmgJaA9DCDPeVnotYXJAlIaUUpRoFU1fAWgWR0CW8Aomois5dX2UKGgGaAloD0MICrlSz0IPckCUhpRSlGgVTU8BaBZHQJbwswYcebN1fZQoaAZoCWgPQwiRm+EGPAhxQJSGlFKUaBVNSANoFkdAlvDFKkEcKnV9lChoBmgJaA9DCO27IvifuXJAlIaUUpRoFU1jAWgWR0CW8W2OhkAhdX2UKGgGaAloD0MIAYqRJTNNcECUhpRSlGgVTcYCaBZHQJb2bnDBMzx1fZQoaAZoCWgPQwjohTsXxqBwQJSGlFKUaBVNOAJoFkdAlvexOgxrSHV9lChoBmgJaA9DCHGvzFs1L3FAlIaUUpRoFU1oAWgWR0CW+OIgeRxMdX2UKGgGaAloD0MI+aBns2rFcECUhpRSlGgVTbABaBZHQJb64dvKlpJ1fZQoaAZoCWgPQwhUOlj/555DQJSGlFKUaBVL+2gWR0CW+/s1sLv1dX2UKGgGaAloD0MIXwfOGdF5cECUhpRSlGgVTXsBaBZHQJb8CtPpIMB1fZQoaAZoCWgPQwi3DaMg+FRwQJSGlFKUaBVNkQFoFkdAlvy/MOf/WHV9lChoBmgJaA9DCERN9PkoLHBAlIaUUpRoFU2LA2gWR0CW/0XlKbrkdX2UKGgGaAloD0MIqOMxA5ViZkCUhpRSlGgVTegDaBZHQJb/lSde6Zp1fZQoaAZoCWgPQwjCFrt91hlwQJSGlFKUaBVNZgFoFkdAlwJeTzND+nV9lChoBmgJaA9DCJ3y6EZYu2RAlIaUUpRoFU3oA2gWR0CXA771Iy0sdX2UKGgGaAloD0MIBRcrajC9QkCUhpRSlGgVTRkBaBZHQJcGYh/y5I91fZQoaAZoCWgPQwjLZg5J7YpwQJSGlFKUaBVN5QFoFkdAlwbp4rz5GnV9lChoBmgJaA9DCFPNrKWANW5AlIaUUpRoFU2JAmgWR0CXCHqk/KQrdX2UKGgGaAloD0MIsOdrlsswYUCUhpRSlGgVTegDaBZHQJcIleXzDoB1fZQoaAZoCWgPQwj1K50Pz0BwQJSGlFKUaBVNSgJoFkdAlwlx02cawXV9lChoBmgJaA9DCM7/q46ci3BAlIaUUpRoFU1dAWgWR0CXC74s3AEddX2UKGgGaAloD0MICklm9Y5gcECUhpRSlGgVTWYBaBZHQJcQZG6PKdR1fZQoaAZoCWgPQwinBprPudRvQJSGlFKUaBVNjQJoFkdAlxkbfcer/HV9lChoBmgJaA9DCHDvGvSlL29AlIaUUpRoFU2oAmgWR0CXL/DqW1MNdX2UKGgGaAloD0MIfH4YIbwwcECUhpRSlGgVTQ4CaBZHQJcwAal1r7B1fZQoaAZoCWgPQwiu2cpLfoVwQJSGlFKUaBVNuAFoFkdAlzGOg13t8nV9lChoBmgJaA9DCOuQm+EG6kpAlIaUUpRoFU0cAWgWR0CXMght+CsfdX2UKGgGaAloD0MIRga5i3CwcECUhpRSlGgVTcYCaBZHQJcylg6U7jl1fZQoaAZoCWgPQwhozvqU47hwQJSGlFKUaBVNkgJoFkdAlzKjWwu/UXV9lChoBmgJaA9DCOlJmdRQt21AlIaUUpRoFU0SAmgWR0CXMzF5OafBdX2UKGgGaAloD0MIsMvwny5VcUCUhpRSlGgVTe8BaBZHQJczZIAfdRB1fZQoaAZoCWgPQwi7mdGPhgxlQJSGlFKUaBVN6ANoFkdAlzPPXwsoUnV9lChoBmgJaA9DCHXkSGdgum9AlIaUUpRoFU3NAWgWR0CXNXD4xk/bdX2UKGgGaAloD0MIwaikToDScUCUhpRSlGgVTTEDaBZHQJc2azVtoBd1fZQoaAZoCWgPQwi2EyUhUQBxQJSGlFKUaBVNlQNoFkdAlzaSvxH5J3V9lChoBmgJaA9DCCf1ZWknanFAlIaUUpRoFU1gAmgWR0CXNrKYAsCldX2UKGgGaAloD0MIoPzdO+oqb0CUhpRSlGgVTTgDaBZHQJc71Wn0kGB1fZQoaAZoCWgPQwiGrG71HDRwQJSGlFKUaBVNAwNoFkdAlz/1+d9Uj3V9lChoBmgJaA9DCK/OMSB7MXBAlIaUUpRoFU1YAWgWR0CXQG60IC2ddX2UKGgGaAloD0MImrLTD2rtb0CUhpRSlGgVTU8BaBZHQJdBjMvAXVN1fZQoaAZoCWgPQwhD5PT1vOFwQJSGlFKUaBVNTQFoFkdAl0NTqrzXjHV9lChoBmgJaA9DCIRnQpPElnFAlIaUUpRoFU1mAWgWR0CXQ1SNwR5DdX2UKGgGaAloD0MI/vLJiuGgckCUhpRSlGgVTY4BaBZHQJdDj++/QBx1fZQoaAZoCWgPQwh2jZYDPf5tQJSGlFKUaBVNgwFoFkdAl0TWy1NQCXV9lChoBmgJaA9DCLIN3IF6nXJAlIaUUpRoFU2DAWgWR0CXRUcNYr8SdX2UKGgGaAloD0MI0R4vpAPFckCUhpRSlGgVTUUBaBZHQJdGMXWOIZZ1fZQoaAZoCWgPQwiKBil4CsltQJSGlFKUaBVNmwFoFkdAl0aXbItDlnV9lChoBmgJaA9DCOaV620znnFAlIaUUpRoFU1tAWgWR0CXR1gy/KyOdX2UKGgGaAloD0MIDvlnBrEUcECUhpRSlGgVTXIBaBZHQJdHYBBAv+R1fZQoaAZoCWgPQwh9sIwNXeduQJSGlFKUaBVNmgFoFkdAl0fBqGlANXV9lChoBmgJaA9DCIEmwoanHnBAlIaUUpRoFU3lAWgWR0CXSAtNi6QOdX2UKGgGaAloD0MIyo0ia422cECUhpRSlGgVTTYBaBZHQJdJXcdo3711fZQoaAZoCWgPQwjuzATDuRptQJSGlFKUaBVNmwJoFkdAl0l/GyX2NHV9lChoBmgJaA9DCMTqjzBMs3BAlIaUUpRoFU1GAWgWR0CXTLbyH2ytdX2UKGgGaAloD0MI6dZrelCdcUCUhpRSlGgVTUEBaBZHQJdNuur6tT11fZQoaAZoCWgPQwgJUb6gRStxQJSGlFKUaBVNggFoFkdAl04gkHD77HV9lChoBmgJaA9DCMQkXMijW29AlIaUUpRoFU1ZAWgWR0CXTq0YTCcgdX2UKGgGaAloD0MIdopVg7CicECUhpRSlGgVTV0BaBZHQJdO/Ud7v5R1fZQoaAZoCWgPQwgZjBGJQqdHQJSGlFKUaBVL5WgWR0CXTw46fapQdX2UKGgGaAloD0MIi8ba31nucUCUhpRSlGgVTUYBaBZHQJdPS+8Gs3h1fZQoaAZoCWgPQwjzcW2oGHlvQJSGlFKUaBVNPQFoFkdAl1Awmu1WsHV9lChoBmgJaA9DCOhqK/YXiG1AlIaUUpRoFU1hAWgWR0CXUIGGVRk3dX2UKGgGaAloD0MIKLhYUYPObUCUhpRSlGgVTRECaBZHQJdTB0HQhOh1fZQoaAZoCWgPQwgFM6ZgjeJxQJSGlFKUaBVNPgFoFkdAl1QBdUsFuHV9lChoBmgJaA9DCKsGYW43C3FAlIaUUpRoFU1XAWgWR0CXVLlZ5iVjdX2UKGgGaAloD0MIlYCYhMtEcUCUhpRSlGgVTZcBaBZHQJdVLtJFspJ1fZQoaAZoCWgPQwi3ek56n3FyQJSGlFKUaBVNxwFoFkdAl1Xw7kn1F3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dd427c7ff710aeaefd2e4b11ba1609eb48e2299b0b62d364185ebc5279d0881
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffe79fc5e058674d26d0b144747f38675d7dd2c4ff519a80efa9812737129eca
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (189 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.52307071826607, "std_reward": 13.095766137782972, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T16:00:11.230802"}