Create params.yaml
Browse filesThis parameters are used while training wav2vec model on NMSQA dataset.
- params.yaml +44 -0
params.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mode: "train"
|
2 |
+
pretrained_model_name: "facebook/wav2vec2-base-960h"
|
3 |
+
freeze_pretrained: True
|
4 |
+
output_dir: "out/model_asr_base_alldata"
|
5 |
+
dataset_script: "dataset/asr_dataset.py"
|
6 |
+
part_name: "nmsqa_all_asr"
|
7 |
+
window_size: 321
|
8 |
+
learning_rate: 0.0002
|
9 |
+
group_by_length: True
|
10 |
+
per_device_train_batch_size: 2
|
11 |
+
num_train_epochs: 10
|
12 |
+
fp16: True
|
13 |
+
save_steps: 1000
|
14 |
+
logging_steps: 500
|
15 |
+
warmup_steps: 500
|
16 |
+
weight_decay: 0.0005
|
17 |
+
load_best_model_at_end: True
|
18 |
+
metric_for_best_model: wer
|
19 |
+
greater_is_better: True
|
20 |
+
save_total_limit: 2
|
21 |
+
eval: True
|
22 |
+
per_device_eval_batch_size: 2
|
23 |
+
eval_steps: 1000
|
24 |
+
evaluation_strategy: "steps"
|
25 |
+
per_device_test_batch_size: 2
|
26 |
+
shuffle: False
|
27 |
+
attention_dropout: 0.0
|
28 |
+
hidden_dropout: 0.0
|
29 |
+
feat_proj_dropout: 0.0
|
30 |
+
mask_time_prob: 0.05
|
31 |
+
layer_dropout: 0.0
|
32 |
+
ctc_loss_reduction: "mean"
|
33 |
+
unk: "[UNK]"
|
34 |
+
pad: "[PAD]"
|
35 |
+
word_delimited: "|"
|
36 |
+
sampling_rate: 16000
|
37 |
+
padding_value: 0.0
|
38 |
+
feature_size: 1
|
39 |
+
normalize: True
|
40 |
+
gradient_accumulation_steps: 2
|
41 |
+
gradient_checkpointing: True
|
42 |
+
max_answer_length : 500
|
43 |
+
test_weight: 0.6
|
44 |
+
eval_part_name: validation
|