menevsem commited on
Commit
b11fb8c
1 Parent(s): a412ebf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-tiny
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: whisper-tiny-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # whisper-tiny-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4744
36
+ - Accuracy: 0.9
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.0107 | 0.98 | 28 | 0.5000 | 0.86 |
71
+ | 0.1932 | 2.0 | 57 | 0.6231 | 0.85 |
72
+ | 0.0589 | 2.98 | 85 | 0.7759 | 0.81 |
73
+ | 0.0475 | 4.0 | 114 | 0.4744 | 0.9 |
74
+ | 0.0303 | 4.98 | 142 | 0.6446 | 0.88 |
75
+ | 0.0037 | 6.0 | 171 | 0.4784 | 0.88 |
76
+ | 0.0014 | 6.98 | 199 | 0.6325 | 0.86 |
77
+ | 0.0015 | 8.0 | 228 | 0.6423 | 0.88 |
78
+ | 0.0012 | 8.98 | 256 | 0.5485 | 0.89 |
79
+ | 0.0231 | 9.82 | 280 | 0.5532 | 0.89 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.32.0.dev0
85
+ - Pytorch 2.0.1+cu118
86
+ - Datasets 2.14.3
87
+ - Tokenizers 0.13.3