--- base_model: /home/jovyan/workspace/PipeDec/checkpoint/Llama-3.1-8B-Instruct-sft-5e-3-epoch-100-humaneval-stage-2 tags: - alignment-handbook - generated_from_trainer datasets: - meng-lab/Llama-3.1-8B-Instruct-humaneval model-index: - name: Llama-3.1-8B-Instruct-sft-5e-3-epoch-100-humaneval-stage-3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/uva-llm/huggingface/runs/86389vz6) # Llama-3.1-8B-Instruct-sft-5e-3-epoch-100-humaneval-stage-3 This model is a fine-tuned version of [/home/jovyan/workspace/PipeDec/checkpoint/Llama-3.1-8B-Instruct-sft-5e-3-epoch-100-humaneval-stage-2](https://huggingface.co//home/jovyan/workspace/PipeDec/checkpoint/Llama-3.1-8B-Instruct-sft-5e-3-epoch-100-humaneval-stage-2) on the meng-lab/Llama-3.1-8B-Instruct-humaneval dataset. It achieves the following results on the evaluation set: - Loss: 11.0822 - Loss Three Hop Layer 8 Head: 3.3949 - Loss Three Hop Layer 16 Head: 2.9406 - Loss Three Hop Layer 24 Head: 2.6311 - Loss Three Hop Layer 32 Head: 2.4800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loss Three Hop Layer 8 Head | Loss Three Hop Layer 16 Head | Loss Three Hop Layer 24 Head | Loss Three Hop Layer 32 Head | |:-------------:|:-------:|:----:|:---------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:| | 17.1204 | 9.6677 | 200 | 17.4024 | 4.0165 | 3.6938 | 5.0117 | 5.0980 | | 11.7831 | 19.3353 | 400 | 12.4640 | 3.8214 | 3.1283 | 2.8095 | 3.0563 | | 11.1082 | 29.0030 | 600 | 12.3118 | 3.4779 | 3.1955 | 2.9590 | 2.9857 | | 10.9205 | 38.6707 | 800 | 11.9277 | 3.7709 | 3.0051 | 2.8893 | 2.6454 | | 10.1281 | 48.3384 | 1000 | 11.6923 | 3.4574 | 2.9719 | 2.8398 | 2.7656 | | 9.4147 | 58.0060 | 1200 | 11.2543 | 3.4058 | 2.9891 | 2.6593 | 2.5635 | | 8.9315 | 67.6737 | 1400 | 11.0952 | 3.3972 | 2.9370 | 2.6327 | 2.4895 | | 8.9092 | 77.3414 | 1600 | 11.1042 | 3.4010 | 2.9454 | 2.6344 | 2.4875 | | 8.8371 | 87.0091 | 1800 | 11.0849 | 3.3957 | 2.9410 | 2.6311 | 2.4803 | | 8.8213 | 96.6767 | 2000 | 11.0822 | 3.3949 | 2.9406 | 2.6311 | 2.4800 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.19.1