File size: 5,099 Bytes
c444eb3 202e5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: other
license_name: tongyi-qwen
license_link: >-
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
base_model:
- Qwen/Qwen2-0.5B
---
# SliMM: A Simple LMM baseline with Dynamic Visual Resolution π
[[π Project Page](https://deepstack-vl.github.io/)]
[[π Paper](https://arxiv.org/abs/2406.04334)]
## π₯ Latest Update
* [2024/12/12] Our [first version](https://huggingface.co/collections/menglc/slimm-675bd737c2965037a6b52d05) is out! We release a strong 0.5B baseline model [SliMM-Qwen2-0.5B](https://huggingface.co/menglc/SliMM-Qwen2-0.5B) and advanced baseline [SliMM-DeepStackM-Qwen2-0.5B](https://huggingface.co/menglc/SliMM-DeepStackM-Qwen2-0.5B). We release a strong 2B model [SliMM-DeepStackE-Qwen2VL-2B](https://huggingface.co/menglc/SliMM-DeepStackE-Qwen2VL-2B) continous fine-tuned from Qwen2VL-2B, which save 4x fewer visual tokens for LLM with. Training scrips are avaliable [here]()!
## Introduction
* **Advanced Techniques**: We incorporate native dynamic resolution, as used in Qwen2-VL, for high-resolution visual encoding, replacing the previous cumbersome Multi-Crop/AnyRes methods. Moreover, building on DeepStack [1], we maintain the same principle of interting stacked visual tokens into **multiple layers** of the LLMs. We propose two enhanced versions for native resolution vision encoding: DeepStack-MidLayers, which improves performance with negligible additional FLOPs by stacking multi-level visual tokens from the middle layers of the vision encoder, and DeepStack-Efficient, which reduces visual token usage while maintaining high performance.
* **Seamless Integration**: Easily use LLaVA-format training data in our codebase.
* **Training Efficiency**: Fine-tuning on the 748K LLaVA-Next-DATA for on epoch takes only 4 hours for 0.5/2B Qwen2 and 6 hours for a 7B on 8xH100, which is more than 2x faster than LLaVA-OV codebase.
* **Strong Baseline Model for Small LMMs**: We establish a robust baseline using widely-used public available datasets, including LCS-758K (Stage-1), LLaVA-OV-MidStage (Stage 1.5), and LLaVA-OneVision SI (Stage 2).
[1] *DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs*
## Quick Start
```bash
git clone https://github.com/MengLcool/SliMM.git
cd SliMM
pip install -e .
```
```Python
# this is very similar to qwen2-vl
from slimm.model.processor import SliMMQwen2VLProcessor
from slimm.model.slimm import SliMMForConditionalGeneration
from slimm.model.utils_vl import process_vision_info
model_path = "menglc/SliMM-DeepStackM-Qwen2-0.5B"
model = SliMMForConditionalGeneration.from_pretrained(
model_path, torch_dtype="auto", device_map="auto"
)
processor = SliMMQwen2VLProcessor.from_pretrained(model_path)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
## Benchmarks
| Benchmark | MMMU (Val) | ChartQA (Test) | AI2D (test) | DocVQA (val)
|-------------------------|------------|----------------|-------------|-------------|
|NanoLLaVA-Qwen1.5-0.5B |28.6 | NA |NA |NA |
|OmniVLM v1 |39.9 | 59.2 |NA |NA |
|OmniVLM v2 |**40.0** | 61.9 |NA |NA |
|LLaVA-OV-SI-Qwen2.5-0.5B |31.2 | 61.0 |54.2 |75.0 |
|LLaVA-OV-Qwen2.5-0.5B |31.4 | 61.4 |57.1 |73.7 |
|SliMM-Qwen2-0.5B |30.6 | 64.2 |58.4 |77.0 |
|SliMM-DeepStackM-Qwen2-0.5B|**31.4** | **65.2** |**60.3** |**77.7** |
## π Citation
If you find our work helpful, please consider citing our paper :paperclip: and starring our repo :star2: :
```
@inproceedings{meng2024deepstack,
title={DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs},
author={Meng, Lingchen and Yang, Jianwei and Tian, Rui and Dai, Xiyang and Wu, Zuxuan and Gao, Jianfeng and Jiang, Yu-Gang},
booktitle={NeurIPS},
year={2024}
}
``` |