menimeni123
commited on
Commit
·
5237bb2
1
Parent(s):
fc9cdc9
latest
Browse files- app.py +57 -47
- config.json +0 -15
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,55 +1,65 @@
|
|
1 |
-
|
|
|
2 |
import joblib
|
3 |
-
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
-
|
6 |
|
7 |
-
#
|
8 |
-
app = Flask(__name__)
|
9 |
-
|
10 |
-
# Load model and tokenizer
|
11 |
-
model = joblib.load('model.joblib')
|
12 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
13 |
-
model.eval()
|
14 |
|
15 |
-
#
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
17 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
encoding = tokenizer(str(text), truncation=True, padding=True, max_length=128, return_tensors='pt')
|
22 |
-
input_ids = encoding['input_ids'].to(device)
|
23 |
-
attention_mask = encoding['attention_mask'].to(device)
|
24 |
-
|
25 |
-
with torch.no_grad():
|
26 |
-
outputs = model(input_ids, attention_mask=attention_mask)
|
27 |
-
logits = outputs.logits
|
28 |
-
probabilities = F.softmax(logits, dim=-1)
|
29 |
-
confidence, predicted_class = torch.max(probabilities, dim=-1)
|
30 |
-
|
31 |
-
class_names = ["JAILBREAK", "INJECTION", "PHISHING", "SAFE"]
|
32 |
-
predicted_label = class_names[predicted_class.item()]
|
33 |
-
confidence_score = confidence.item()
|
34 |
-
|
35 |
-
return predicted_label, confidence_score
|
36 |
-
|
37 |
-
# Define the inference route
|
38 |
-
@app.route('/inference', methods=['POST'])
|
39 |
-
def inference():
|
40 |
-
data = request.json
|
41 |
-
if 'text' not in data:
|
42 |
-
return jsonify({"error": "No text provided"}), 400
|
43 |
-
|
44 |
-
text = data['text']
|
45 |
-
label, confidence = classify_text(text)
|
46 |
-
|
47 |
-
return jsonify({
|
48 |
-
'text': text,
|
49 |
-
'classification': label,
|
50 |
-
'confidence': confidence
|
51 |
-
})
|
52 |
-
|
53 |
-
# Start the Flask server
|
54 |
-
if __name__ == '__main__':
|
55 |
-
app.run(host='0.0.0.0', port=8080)
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
import joblib
|
4 |
+
import torch
|
5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
+
from torch.nn.functional import softmax
|
7 |
|
8 |
+
# Load the tokenizer and model
|
|
|
|
|
|
|
|
|
9 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
10 |
|
11 |
+
# Check if CUDA is available, otherwise use CPU
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Load the saved model
|
15 |
+
model = joblib.load('model.joblib')
|
16 |
model.to(device)
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
# Class names
|
20 |
+
class_names = ["JAILBREAK", "INJECTION", "PHISHING", "SAFE"]
|
21 |
+
|
22 |
+
def preprocess(text):
|
23 |
+
# Tokenize the input text
|
24 |
+
encoding = tokenizer(
|
25 |
+
text,
|
26 |
+
truncation=True,
|
27 |
+
padding=True,
|
28 |
+
max_length=128,
|
29 |
+
return_tensors='pt'
|
30 |
+
)
|
31 |
+
return encoding
|
32 |
+
|
33 |
+
def inference(model_inputs):
|
34 |
+
"""
|
35 |
+
This function will be called for every inference request.
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
# Get the text input
|
39 |
+
text = model_inputs.get('text', None)
|
40 |
+
if text is None:
|
41 |
+
return {'message': 'No text provided for inference.'}
|
42 |
+
|
43 |
+
# Preprocess the text
|
44 |
+
encoding = preprocess(text)
|
45 |
+
input_ids = encoding['input_ids'].to(device)
|
46 |
+
attention_mask = encoding['attention_mask'].to(device)
|
47 |
+
|
48 |
+
# Perform inference
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
51 |
+
logits = outputs.logits
|
52 |
+
probabilities = softmax(logits, dim=-1)
|
53 |
+
confidence, predicted_class = torch.max(probabilities, dim=-1)
|
54 |
+
|
55 |
+
# Prepare the response
|
56 |
+
predicted_label = class_names[predicted_class.item()]
|
57 |
+
confidence_score = confidence.item()
|
58 |
+
|
59 |
+
return {
|
60 |
+
'classification': predicted_label,
|
61 |
+
'confidence': confidence_score
|
62 |
+
}
|
63 |
|
64 |
+
except Exception as e:
|
65 |
+
return {'error': str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model_type": "bert",
|
3 |
-
"num_labels": 4,
|
4 |
-
"hidden_size": 768,
|
5 |
-
"vocab_size": 30522,
|
6 |
-
"hidden_act": "gelu",
|
7 |
-
"initializer_range": 0.02,
|
8 |
-
"layer_norm_eps": 1e-12,
|
9 |
-
"max_position_embeddings": 512,
|
10 |
-
"type_vocab_size": 2,
|
11 |
-
"attention_probs_dropout_prob": 0.1,
|
12 |
-
"hidden_dropout_prob": 0.1,
|
13 |
-
"intermediate_size": 3072
|
14 |
-
}
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
torch
|
2 |
-
transformers
|
3 |
joblib
|
|
|
1 |
+
# requirements.txt
|
2 |
torch
|
3 |
+
transformers
|
4 |
joblib
|