menimeni123
commited on
Commit
·
b36a521
1
Parent(s):
1ad94a4
latest
Browse files- handler.py → app.py +36 -30
handler.py → app.py
RENAMED
@@ -1,49 +1,55 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
-
|
4 |
-
from
|
|
|
5 |
import torch.nn.functional as F
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
# Load the model (ensure the same model that was trained)
|
11 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
-
model_path = os.path.join(current_dir, "model.joblib")
|
13 |
-
|
14 |
-
print(f"Loading model from: {model_path}")
|
15 |
-
model = load(model_path)
|
16 |
|
17 |
-
#
|
|
|
|
|
18 |
model.eval()
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
22 |
|
23 |
-
# Inference function
|
24 |
def classify_text(text):
|
25 |
encoding = tokenizer(str(text), truncation=True, padding=True, max_length=128, return_tensors='pt')
|
26 |
-
input_ids = encoding['input_ids']
|
27 |
-
attention_mask = encoding['attention_mask']
|
28 |
-
|
29 |
-
# Move tensors to device if needed
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
input_ids = input_ids.cuda()
|
32 |
-
attention_mask = attention_mask.cuda()
|
33 |
-
model.cuda()
|
34 |
|
35 |
with torch.no_grad():
|
36 |
outputs = model(input_ids, attention_mask=attention_mask)
|
37 |
logits = outputs.logits
|
38 |
probabilities = F.softmax(logits, dim=-1)
|
39 |
confidence, predicted_class = torch.max(probabilities, dim=-1)
|
40 |
-
|
|
|
41 |
predicted_label = class_names[predicted_class.item()]
|
42 |
confidence_score = confidence.item()
|
43 |
|
44 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
return classify_text(text)
|
|
|
|
|
1 |
import torch
|
2 |
+
import joblib
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
import torch.nn.functional as F
|
6 |
|
7 |
+
# Initialize Flask application
|
8 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Load model and tokenizer
|
11 |
+
model = joblib.load('model.joblib')
|
12 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
13 |
model.eval()
|
14 |
|
15 |
+
# Set device to CUDA if available
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model.to(device)
|
18 |
|
19 |
+
# Inference function
|
20 |
def classify_text(text):
|
21 |
encoding = tokenizer(str(text), truncation=True, padding=True, max_length=128, return_tensors='pt')
|
22 |
+
input_ids = encoding['input_ids'].to(device)
|
23 |
+
attention_mask = encoding['attention_mask'].to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
with torch.no_grad():
|
26 |
outputs = model(input_ids, attention_mask=attention_mask)
|
27 |
logits = outputs.logits
|
28 |
probabilities = F.softmax(logits, dim=-1)
|
29 |
confidence, predicted_class = torch.max(probabilities, dim=-1)
|
30 |
+
|
31 |
+
class_names = ["JAILBREAK", "INJECTION", "PHISHING", "SAFE"]
|
32 |
predicted_label = class_names[predicted_class.item()]
|
33 |
confidence_score = confidence.item()
|
34 |
|
35 |
+
return predicted_label, confidence_score
|
36 |
+
|
37 |
+
# Define the inference route
|
38 |
+
@app.route('/inference', methods=['POST'])
|
39 |
+
def inference():
|
40 |
+
data = request.json
|
41 |
+
if 'text' not in data:
|
42 |
+
return jsonify({"error": "No text provided"}), 400
|
43 |
+
|
44 |
+
text = data['text']
|
45 |
+
label, confidence = classify_text(text)
|
46 |
+
|
47 |
+
return jsonify({
|
48 |
+
'text': text,
|
49 |
+
'classification': label,
|
50 |
+
'confidence': confidence
|
51 |
+
})
|
52 |
|
53 |
+
# Start the Flask server
|
54 |
+
if __name__ == '__main__':
|
55 |
+
app.run(host='0.0.0.0', port=8080)
|
|