File size: 1,896 Bytes
4cc177e 49d57fe 4cc177e a51f0bc 4cc177e 49d57fe 4cc177e 16e2468 4cc177e 16e2468 4cc177e a51f0bc 16e2468 4cc177e a51f0bc 4cc177e a51f0bc 4cc177e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: mT5_base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mT5_base
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3417
- Bleu Score: 47.0526
- Precision: 17.2043
- Recall: 17.2043
- Gen Len: 16.8315
- Err: 17.2043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall | Gen Len | Err |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:|
| 2.798 | 1.0 | 838 | 0.5495 | 41.8683 | 7.7658 | 7.7658 | 16.7766 | 7.7658 |
| 0.7216 | 2.0 | 1676 | 0.4311 | 44.9002 | 13.0227 | 13.0227 | 16.8148 | 13.0227 |
| 0.5551 | 3.0 | 2514 | 0.3565 | 46.5247 | 16.0096 | 16.0096 | 16.816 | 16.0096 |
| 0.4951 | 4.0 | 3352 | 0.3417 | 47.0526 | 17.2043 | 17.2043 | 16.8315 | 17.2043 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|