File size: 1,896 Bytes
4cc177e
 
 
49d57fe
4cc177e
 
a51f0bc
 
 
4cc177e
 
 
 
 
 
 
 
 
 
49d57fe
4cc177e
16e2468
 
 
 
 
 
4cc177e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e2468
4cc177e
 
 
a51f0bc
 
16e2468
 
 
 
4cc177e
 
 
 
a51f0bc
4cc177e
a51f0bc
4cc177e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: mT5_base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mT5_base

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3417
- Bleu Score: 47.0526
- Precision: 17.2043
- Recall: 17.2043
- Gen Len: 16.8315
- Err: 17.2043

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall  | Gen Len | Err     |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:|
| 2.798         | 1.0   | 838  | 0.5495          | 41.8683    | 7.7658    | 7.7658  | 16.7766 | 7.7658  |
| 0.7216        | 2.0   | 1676 | 0.4311          | 44.9002    | 13.0227   | 13.0227 | 16.8148 | 13.0227 |
| 0.5551        | 3.0   | 2514 | 0.3565          | 46.5247    | 16.0096   | 16.0096 | 16.816  | 16.0096 |
| 0.4951        | 4.0   | 3352 | 0.3417          | 47.0526    | 17.2043   | 17.2043 | 16.8315 | 17.2043 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0