File size: 1,786 Bytes
4cc177e 36da2bb 4cc177e a51f0bc 4cc177e 36da2bb 4cc177e 36da2bb 4cc177e 36da2bb 4cc177e a51f0bc 36da2bb 4cc177e a51f0bc 4cc177e a51f0bc 4cc177e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: mT5_base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mT5_base
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1703
- Bleu Score: 51.176
- Precision: 27.4791
- Recall: 27.4791
- Gen Len: 16.8805
- Err: 27.4791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall | Gen Len | Err |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:|
| 1.3269 | 1.0 | 838 | 0.2396 | 48.4521 | 20.7885 | 20.7885 | 16.8339 | 20.7885 |
| 0.2831 | 2.0 | 1676 | 0.1861 | 50.5118 | 26.1649 | 26.1649 | 16.8781 | 26.1649 |
| 0.2167 | 3.0 | 2514 | 0.1703 | 51.176 | 27.4791 | 27.4791 | 16.8805 | 27.4791 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|