--- license: apache-2.0 model-index: - name: mera-mix-4x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.17 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.44 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.17 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard --- # Model mera-mix-4x7B This is a mixture of experts (MoE) model that is half as large (4 experts instead of 8) as the [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) while been comparable to it across different benchmarks. You can use it as a drop in replacement for your Mixtral-8x7B and get much faster inference. mera-mix-4x7B achieves the score of 75.91 on the OpenLLM Eval and compares well with 72.7 by Mixtral-8x7B and 74.46 by Mixtral-8x22B. You can try the model with the [Mera Mixture Chat](https://huggingface.co/spaces/meraGPT/mera-mixture-chat). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meraGPT__mera-mix-4x7B) | Metric |Value| |---------------------------------|----:| |Avg. |75.91| |AI2 Reasoning Challenge (25-Shot)|72.95| |HellaSwag (10-Shot) |89.17| |MMLU (5-Shot) |64.44| |TruthfulQA (0-shot) |77.17| |Winogrande (5-shot) |85.64| |GSM8k (5-shot) |66.11| In addition, to the official Open LLM Leaderboard, the results on OpenLLM Eval have been validated by [others as well (76.59)](https://github.com/saucam/model_evals/tree/main?tab=readme-ov-file#model-eval-results). Our own initial eval is available [here (76.37)](https://gist.github.com/codelion/78f88333230801c9bbaa6fc22078d820). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meraGPT__mera-mix-4x7B) | Metric |Value| |---------------------------------|----:| |Avg. |75.91| |AI2 Reasoning Challenge (25-Shot)|72.95| |HellaSwag (10-Shot) |89.17| |MMLU (5-Shot) |64.44| |TruthfulQA (0-shot) |77.17| |Winogrande (5-shot) |85.64| |GSM8k (5-shot) |66.11|