mertcobanov commited on
Commit
b4a19de
·
verified ·
1 Parent(s): 018cdc1

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/mpnet-base
3
+ datasets:
4
+ - mertcobanov/all-nli-triplets-turkish
5
+ language:
6
+ - en
7
+ - tr
8
+ library_name: sentence-transformers
9
+ metrics:
10
+ - cosine_accuracy
11
+ pipeline_tag: sentence-similarity
12
+ tags:
13
+ - sentence-transformers
14
+ - sentence-similarity
15
+ - feature-extraction
16
+ - generated_from_trainer
17
+ - dataset_size:120781
18
+ - loss:MultipleNegativesRankingLoss
19
+ widget:
20
+ - source_sentence: Bir köpek sahibi, evcil hayvanıyla birlikte koşuyor ve evcil hayvan
21
+ bir parkurda engellerden kaçınıyor.
22
+ sentences:
23
+ - Bazı bitkilerin önünde mavi bir kano.
24
+ - Bir adam köpeğinin yanında koşuyor.
25
+ - Adam bir kediyle birlikte.
26
+ - source_sentence: Parlamenter bölümünün patronunun ev hizmetiyle bağlantılı bir politikacı,
27
+ 0-609-3459812 numaralı cep telefonuna sahip ve mizah anlayışının olmamasıyla tanınıyor,
28
+ 'Hayran' adlı birinden gelen 'En iyi kürek dilekleri' mesajını pek iyi karşılamadı.
29
+ sentences:
30
+ - Doktor Perennial, kötü niyetli çavuş uyandığında ayakta duruyordu.
31
+ - Politikacı, patronunun ev hizmetini aradığında, bir 'hayran'dan gelen bir mesaja
32
+ pek hoş karşılamadı.
33
+ - Mesajı aldığı için o kadar minnettardı ki, gönderen kişiye bir demet çiçek gönderdi.
34
+ - source_sentence: Bankanın kasalarında.
35
+ sentences:
36
+ - Ayakta duran bir insan
37
+ - Banka kasasında.
38
+ - Bankadaki kasa.
39
+ - source_sentence: Bir grup Asyalı erkek, birlikte bir yemek yedikten sonra büyük
40
+ bir masanın etrafında poz veriyor.
41
+ sentences:
42
+ - Bir grup Asyalı erkek birlikte bir yemek yedi.
43
+ - Pazarlar, kaplıcalar ve kayak pistleri burada bulunan diğer cazibe merkezlerinden
44
+ bazılarını oluşturuyor.
45
+ - Bir grup Asyalı erkek futbol oynuyor.
46
+ - source_sentence: Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa,
47
+ bu yardımcı olur.
48
+ sentences:
49
+ - Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için.
50
+ - Adamın gömleği, kot pantolonundan farklı bir renkte.
51
+ - Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın.
52
+ model-index:
53
+ - name: SentenceTransformer based on microsoft/mpnet-base
54
+ results:
55
+ - task:
56
+ type: triplet
57
+ name: Triplet
58
+ dataset:
59
+ name: all nli dev turkish
60
+ type: all-nli-dev-turkish
61
+ metrics:
62
+ - type: cosine_accuracy
63
+ value: 0.7764277035236938
64
+ name: Cosine Accuracy
65
+ - task:
66
+ type: triplet
67
+ name: Triplet
68
+ dataset:
69
+ name: all nli test turkish
70
+ type: all-nli-test-turkish
71
+ metrics:
72
+ - type: cosine_accuracy
73
+ value: 0.7740959297927069
74
+ name: Cosine Accuracy
75
+ ---
76
+
77
+ # SentenceTransformer based on microsoft/mpnet-base
78
+
79
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
80
+
81
+ ## Model Details
82
+
83
+ ### Model Description
84
+ - **Model Type:** Sentence Transformer
85
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
86
+ - **Maximum Sequence Length:** 512 tokens
87
+ - **Output Dimensionality:** 768 dimensions
88
+ - **Similarity Function:** Cosine Similarity
89
+ - **Training Dataset:**
90
+ - [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish)
91
+ - **Languages:** en, tr
92
+ <!-- - **License:** Unknown -->
93
+
94
+ ### Model Sources
95
+
96
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
97
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
98
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
99
+
100
+ ### Full Model Architecture
101
+
102
+ ```
103
+ SentenceTransformer(
104
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
105
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
106
+ )
107
+ ```
108
+
109
+ ## Usage
110
+
111
+ ### Direct Usage (Sentence Transformers)
112
+
113
+ First install the Sentence Transformers library:
114
+
115
+ ```bash
116
+ pip install -U sentence-transformers
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+ ```python
121
+ from sentence_transformers import SentenceTransformer
122
+
123
+ # Download from the 🤗 Hub
124
+ model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v4-dgx")
125
+ # Run inference
126
+ sentences = [
127
+ 'Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa, bu yardımcı olur.',
128
+ 'Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için.',
129
+ 'Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın.',
130
+ ]
131
+ embeddings = model.encode(sentences)
132
+ print(embeddings.shape)
133
+ # [3, 768]
134
+
135
+ # Get the similarity scores for the embeddings
136
+ similarities = model.similarity(embeddings, embeddings)
137
+ print(similarities.shape)
138
+ # [3, 3]
139
+ ```
140
+
141
+ <!--
142
+ ### Direct Usage (Transformers)
143
+
144
+ <details><summary>Click to see the direct usage in Transformers</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Downstream Usage (Sentence Transformers)
151
+
152
+ You can finetune this model on your own dataset.
153
+
154
+ <details><summary>Click to expand</summary>
155
+
156
+ </details>
157
+ -->
158
+
159
+ <!--
160
+ ### Out-of-Scope Use
161
+
162
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
163
+ -->
164
+
165
+ ## Evaluation
166
+
167
+ ### Metrics
168
+
169
+ #### Triplet
170
+
171
+ * Datasets: `all-nli-dev-turkish` and `all-nli-test-turkish`
172
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
173
+
174
+ | Metric | all-nli-dev-turkish | all-nli-test-turkish |
175
+ |:--------------------|:--------------------|:---------------------|
176
+ | **cosine_accuracy** | **0.7764** | **0.7741** |
177
+
178
+ <!--
179
+ ## Bias, Risks and Limitations
180
+
181
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
182
+ -->
183
+
184
+ <!--
185
+ ### Recommendations
186
+
187
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
188
+ -->
189
+
190
+ ## Training Details
191
+
192
+ ### Training Dataset
193
+
194
+ #### all-nli-triplets-turkish
195
+
196
+ * Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [13554fd](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/13554fdb2675c44f84a8dccc1afb51cee8a1e4ba)
197
+ * Size: 120,781 training samples
198
+ * Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | anchor_translated | positive_translated | negative_translated |
201
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
202
+ | type | string | string | string |
203
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.77 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.1 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 12.41 tokens</li><li>max: 44 tokens</li></ul> |
204
+ * Samples:
205
+ | anchor_translated | positive_translated | negative_translated |
206
+ |:---------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------|
207
+ | <code>Bir kişi, bir atın üzerinde, bozulmuş bir uçağın üzerinden atlıyor.</code> | <code>Bir kişi dışarıda, bir atın üzerinde.</code> | <code>Bir kişi bir lokantada omlet siparişi veriyor.</code> |
208
+ | <code>Bir Küçük Lig takımı, bir oyuncunun bir üsse kayarak girmeye çalıştığı sırada onu yakalamaya çalışıyor.</code> | <code>Bir takım bir koşucuyu dışarı atmaya çalışıyor.</code> | <code>Bir takım Satürn'de beyzbol oynuyor.</code> |
209
+ | <code>Kadın beyaz giyiyor.</code> | <code>Beyaz bir ceket giymiş bir kadın bir tekerlekli sandalyeyi itiyor.</code> | <code>Siyah giyinmiş bir adam, siyah giyinmiş bir kadını kucaklıyor.</code> |
210
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
211
+ ```json
212
+ {
213
+ "scale": 20.0,
214
+ "similarity_fct": "cos_sim"
215
+ }
216
+ ```
217
+
218
+ ### Evaluation Dataset
219
+
220
+ #### all-nli-triplets-turkish
221
+
222
+ * Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [13554fd](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/13554fdb2675c44f84a8dccc1afb51cee8a1e4ba)
223
+ * Size: 6,584 evaluation samples
224
+ * Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | anchor_translated | positive_translated | negative_translated |
227
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
228
+ | type | string | string | string |
229
+ | details | <ul><li>min: 2 tokens</li><li>mean: 22.3 tokens</li><li>max: 135 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 10.92 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.81 tokens</li><li>max: 34 tokens</li></ul> |
230
+ * Samples:
231
+ | anchor_translated | positive_translated | negative_translated |
232
+ |:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
233
+ | <code>Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir.</code> | <code>Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler.</code> | <code>Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir.</code> |
234
+ | <code>Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor.</code> | <code>Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor.</code> | <code>Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor.</code> |
235
+ | <code>İmkansız.</code> | <code>Yapılamaz.</code> | <code>Tamamen mümkün.</code> |
236
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
237
+ ```json
238
+ {
239
+ "scale": 20.0,
240
+ "similarity_fct": "cos_sim"
241
+ }
242
+ ```
243
+
244
+ ### Training Hyperparameters
245
+ #### Non-Default Hyperparameters
246
+
247
+ - `eval_strategy`: steps
248
+ - `per_device_train_batch_size`: 64
249
+ - `per_device_eval_batch_size`: 64
250
+ - `learning_rate`: 2e-05
251
+ - `num_train_epochs`: 10
252
+ - `warmup_ratio`: 0.1
253
+ - `fp16`: True
254
+ - `batch_sampler`: no_duplicates
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 64
264
+ - `per_device_eval_batch_size`: 64
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `torch_empty_cache_steps`: None
270
+ - `learning_rate`: 2e-05
271
+ - `weight_decay`: 0.0
272
+ - `adam_beta1`: 0.9
273
+ - `adam_beta2`: 0.999
274
+ - `adam_epsilon`: 1e-08
275
+ - `max_grad_norm`: 1.0
276
+ - `num_train_epochs`: 10
277
+ - `max_steps`: -1
278
+ - `lr_scheduler_type`: linear
279
+ - `lr_scheduler_kwargs`: {}
280
+ - `warmup_ratio`: 0.1
281
+ - `warmup_steps`: 0
282
+ - `log_level`: passive
283
+ - `log_level_replica`: warning
284
+ - `log_on_each_node`: True
285
+ - `logging_nan_inf_filter`: True
286
+ - `save_safetensors`: True
287
+ - `save_on_each_node`: False
288
+ - `save_only_model`: False
289
+ - `restore_callback_states_from_checkpoint`: False
290
+ - `no_cuda`: False
291
+ - `use_cpu`: False
292
+ - `use_mps_device`: False
293
+ - `seed`: 42
294
+ - `data_seed`: None
295
+ - `jit_mode_eval`: False
296
+ - `use_ipex`: False
297
+ - `bf16`: False
298
+ - `fp16`: True
299
+ - `fp16_opt_level`: O1
300
+ - `half_precision_backend`: auto
301
+ - `bf16_full_eval`: False
302
+ - `fp16_full_eval`: False
303
+ - `tf32`: None
304
+ - `local_rank`: 0
305
+ - `ddp_backend`: None
306
+ - `tpu_num_cores`: None
307
+ - `tpu_metrics_debug`: False
308
+ - `debug`: []
309
+ - `dataloader_drop_last`: False
310
+ - `dataloader_num_workers`: 0
311
+ - `dataloader_prefetch_factor`: None
312
+ - `past_index`: -1
313
+ - `disable_tqdm`: False
314
+ - `remove_unused_columns`: True
315
+ - `label_names`: None
316
+ - `load_best_model_at_end`: False
317
+ - `ignore_data_skip`: False
318
+ - `fsdp`: []
319
+ - `fsdp_min_num_params`: 0
320
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
321
+ - `fsdp_transformer_layer_cls_to_wrap`: None
322
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
323
+ - `deepspeed`: None
324
+ - `label_smoothing_factor`: 0.0
325
+ - `optim`: adamw_torch
326
+ - `optim_args`: None
327
+ - `adafactor`: False
328
+ - `group_by_length`: False
329
+ - `length_column_name`: length
330
+ - `ddp_find_unused_parameters`: None
331
+ - `ddp_bucket_cap_mb`: None
332
+ - `ddp_broadcast_buffers`: False
333
+ - `dataloader_pin_memory`: True
334
+ - `dataloader_persistent_workers`: False
335
+ - `skip_memory_metrics`: True
336
+ - `use_legacy_prediction_loop`: False
337
+ - `push_to_hub`: False
338
+ - `resume_from_checkpoint`: None
339
+ - `hub_model_id`: None
340
+ - `hub_strategy`: every_save
341
+ - `hub_private_repo`: False
342
+ - `hub_always_push`: False
343
+ - `gradient_checkpointing`: False
344
+ - `gradient_checkpointing_kwargs`: None
345
+ - `include_inputs_for_metrics`: False
346
+ - `include_for_metrics`: []
347
+ - `eval_do_concat_batches`: True
348
+ - `fp16_backend`: auto
349
+ - `push_to_hub_model_id`: None
350
+ - `push_to_hub_organization`: None
351
+ - `mp_parameters`:
352
+ - `auto_find_batch_size`: False
353
+ - `full_determinism`: False
354
+ - `torchdynamo`: None
355
+ - `ray_scope`: last
356
+ - `ddp_timeout`: 1800
357
+ - `torch_compile`: False
358
+ - `torch_compile_backend`: None
359
+ - `torch_compile_mode`: None
360
+ - `dispatch_batches`: None
361
+ - `split_batches`: None
362
+ - `include_tokens_per_second`: False
363
+ - `include_num_input_tokens_seen`: False
364
+ - `neftune_noise_alpha`: None
365
+ - `optim_target_modules`: None
366
+ - `batch_eval_metrics`: False
367
+ - `eval_on_start`: False
368
+ - `use_liger_kernel`: False
369
+ - `eval_use_gather_object`: False
370
+ - `average_tokens_across_devices`: False
371
+ - `prompts`: None
372
+ - `batch_sampler`: no_duplicates
373
+ - `multi_dataset_batch_sampler`: proportional
374
+
375
+ </details>
376
+
377
+ ### Training Logs
378
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-dev-turkish_cosine_accuracy | all-nli-test-turkish_cosine_accuracy |
379
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------------------:|:------------------------------------:|
380
+ | 0 | 0 | - | - | 0.5729 | - |
381
+ | 0.2119 | 100 | 6.6103 | 4.5154 | 0.6970 | - |
382
+ | 0.4237 | 200 | 5.1602 | 3.7328 | 0.7195 | - |
383
+ | 0.6356 | 300 | 4.4533 | 3.3389 | 0.7372 | - |
384
+ | 0.8475 | 400 | 3.4465 | 3.6044 | 0.7187 | - |
385
+ | 1.0572 | 500 | 2.6977 | 3.3043 | 0.7418 | - |
386
+ | 1.2691 | 600 | 3.8142 | 3.2066 | 0.7512 | - |
387
+ | 1.4809 | 700 | 3.4333 | 3.0716 | 0.7508 | - |
388
+ | 1.6928 | 800 | 3.1488 | 2.9590 | 0.7553 | - |
389
+ | 1.9047 | 900 | 1.8677 | 3.2416 | 0.7442 | - |
390
+ | 2.1144 | 1000 | 2.2034 | 2.9323 | 0.7634 | - |
391
+ | 2.3263 | 1100 | 2.9834 | 2.9406 | 0.7669 | - |
392
+ | 2.5381 | 1200 | 2.6785 | 2.8607 | 0.7672 | - |
393
+ | 2.75 | 1300 | 2.5096 | 2.8939 | 0.7684 | - |
394
+ | 2.9619 | 1400 | 0.876 | 3.2539 | 0.7416 | - |
395
+ | 3.1716 | 1500 | 2.3355 | 2.7503 | 0.7758 | - |
396
+ | 3.3835 | 1600 | 2.4666 | 2.7920 | 0.7707 | - |
397
+ | 3.5953 | 1700 | 2.2691 | 2.7860 | 0.7729 | - |
398
+ | 3.8072 | 1800 | 1.8024 | 2.9899 | 0.7571 | - |
399
+ | 4.0169 | 1900 | 0.6443 | 3.0993 | 0.7456 | - |
400
+ | 4.2288 | 2000 | 2.3976 | 2.7792 | 0.7811 | - |
401
+ | 4.4407 | 2100 | 2.1145 | 2.7968 | 0.7728 | - |
402
+ | 4.6525 | 2200 | 1.9788 | 2.7243 | 0.7751 | - |
403
+ | 4.8644 | 2300 | 1.1676 | 2.9885 | 0.7567 | - |
404
+ | 5.0742 | 2400 | 1.0009 | 2.7374 | 0.7767 | - |
405
+ | 5.2860 | 2500 | 2.1276 | 2.7822 | 0.7767 | - |
406
+ | 5.4979 | 2600 | 1.8459 | 2.7822 | 0.7760 | - |
407
+ | 5.7097 | 2700 | 1.7659 | 2.7322 | 0.7766 | - |
408
+ | 5.9216 | 2800 | 0.5916 | 3.0191 | 0.7596 | - |
409
+ | 6.1314 | 2900 | 1.3908 | 2.6973 | 0.7772 | - |
410
+ | 6.3432 | 3000 | 1.9257 | 2.7585 | 0.7763 | - |
411
+ | 6.5551 | 3100 | 1.6558 | 2.7350 | 0.7760 | - |
412
+ | 6.7669 | 3200 | 1.5368 | 2.7903 | 0.7722 | - |
413
+ | 6.9788 | 3300 | 0.1968 | 3.0849 | 0.7479 | - |
414
+ | 7.1886 | 3400 | 1.8044 | 2.6626 | 0.7825 | - |
415
+ | 7.4004 | 3500 | 1.7048 | 2.7380 | 0.7790 | - |
416
+ | 7.6123 | 3600 | 1.5666 | 2.7250 | 0.7796 | - |
417
+ | 7.8242 | 3700 | 1.0954 | 2.9620 | 0.7629 | - |
418
+ | 8.0339 | 3800 | 0.487 | 2.8900 | 0.7641 | - |
419
+ | 8.2458 | 3900 | 1.8398 | 2.7186 | 0.7796 | - |
420
+ | 8.4576 | 4000 | 1.5659 | 2.7259 | 0.7778 | - |
421
+ | 8.6695 | 4100 | 1.4825 | 2.7007 | 0.7760 | - |
422
+ | 8.8814 | 4200 | 0.7019 | 2.9050 | 0.7675 | - |
423
+ | 9.0911 | 4300 | 0.9278 | 2.7606 | 0.7731 | - |
424
+ | 9.3030 | 4400 | 1.766 | 2.6978 | 0.7787 | - |
425
+ | 9.5148 | 4500 | 1.4699 | 2.7114 | 0.7801 | - |
426
+ | 9.7267 | 4600 | 1.4647 | 2.7096 | 0.7799 | - |
427
+ | 9.9386 | 4700 | 0.3321 | 2.7418 | 0.7764 | - |
428
+ | 9.9809 | 4720 | - | - | - | 0.7741 |
429
+
430
+
431
+ ### Framework Versions
432
+ - Python: 3.10.14
433
+ - Sentence Transformers: 3.3.1
434
+ - Transformers: 4.46.3
435
+ - PyTorch: 2.4.0
436
+ - Accelerate: 0.27.2
437
+ - Datasets: 3.1.0
438
+ - Tokenizers: 0.20.3
439
+
440
+ ## Citation
441
+
442
+ ### BibTeX
443
+
444
+ #### Sentence Transformers
445
+ ```bibtex
446
+ @inproceedings{reimers-2019-sentence-bert,
447
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
448
+ author = "Reimers, Nils and Gurevych, Iryna",
449
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
450
+ month = "11",
451
+ year = "2019",
452
+ publisher = "Association for Computational Linguistics",
453
+ url = "https://arxiv.org/abs/1908.10084",
454
+ }
455
+ ```
456
+
457
+ #### MultipleNegativesRankingLoss
458
+ ```bibtex
459
+ @misc{henderson2017efficient,
460
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
461
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
462
+ year={2017},
463
+ eprint={1705.00652},
464
+ archivePrefix={arXiv},
465
+ primaryClass={cs.CL}
466
+ }
467
+ ```
468
+
469
+ <!--
470
+ ## Glossary
471
+
472
+ *Clearly define terms in order to be accessible across audiences.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Authors
477
+
478
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Contact
483
+
484
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
485
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8aade3946a641859b60c68b877ff2dd0693f9a0184c3f64e2f98f87e526355d
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "mask_token": "[MASK]",
47
+ "max_length": 512,
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_to_multiple_of": null,
50
+ "pad_token": "[PAD]",
51
+ "pad_token_type_id": 0,
52
+ "padding_side": "right",
53
+ "sep_token": "[SEP]",
54
+ "stride": 0,
55
+ "tokenizer_class": "PreTrainedTokenizerFast",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "[UNK]"
59
+ }