--- library_name: transformers license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - turkish_ner metrics: - f1 - precision - recall - accuracy model-index: - name: xlm-turkish-ner results: - task: name: Token Classification type: token-classification dataset: name: turkish_ner type: turkish_ner config: default split: train args: default metrics: - name: F1 type: f1 value: 0.657840245968501 - name: Precision type: precision value: 0.6669776910679447 - name: Recall type: recall value: 0.6489497792266744 - name: Accuracy type: accuracy value: 0.9113795745182391 --- # xlm-turkish-ner This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the turkish_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.2836 - F1: 0.6578 - Precision: 0.6670 - Recall: 0.6489 - Accuracy: 0.9114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.2704 | 1.0 | 1250 | 0.2745 | 0.6153 | 0.6250 | 0.6059 | 0.8985 | | 0.2047 | 2.0 | 2500 | 0.2656 | 0.6372 | 0.6429 | 0.6315 | 0.9046 | | 0.1646 | 3.0 | 3750 | 0.2628 | 0.6560 | 0.6839 | 0.6303 | 0.9109 | | 0.1256 | 4.0 | 5000 | 0.2895 | 0.6561 | 0.6641 | 0.6482 | 0.9092 | | 0.0953 | 5.0 | 6250 | 0.3224 | 0.6555 | 0.6554 | 0.6556 | 0.9088 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0