huseinzol05
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -84,6 +84,206 @@ Output,
|
|
84 |
|
85 |
Input text can be any languages that speak in Malaysia, as long you use proper prefix, it should be able to translate to target language.
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
## how to generate more randomly?
|
88 |
|
89 |
Use random sampling, read more at https://huggingface.co/blog/how-to-generate#sampling
|
@@ -113,6 +313,8 @@ for o in out:
|
|
113 |
print(o.strip(), '\n------\n')
|
114 |
```
|
115 |
|
|
|
|
|
116 |
```
|
117 |
Tingu ja la, mungkin ada buyuk-buyuk kasi betripak bah, sidak yang kritik pasal bajet 2025 yang papai dekat Anwar tu? Kin panas betul la cerita hari tu. Dorang ni main otak-otak ja, tapi orang tingu ja kerajaan sudah ndapok. Tingu ja la, mungkin ada buyuk-buyuk yang kita nda tau. Bah, mungkin ada buyuk-buyuk yang kita nda tau. Anu bah, mungkin ada buyuk yang kita nda tau. Ndapapa kalau nda faham lagi? Anu bah, kita mesti bikin kerajaan jadi lebih banyak tempat yang lagi banyak lagi yang boleh buat negeri kita jadi lebih banyak.
|
118 |
------
|
|
|
84 |
|
85 |
Input text can be any languages that speak in Malaysia, as long you use proper prefix, it should be able to translate to target language.
|
86 |
|
87 |
+
## translate code
|
88 |
+
|
89 |
+
### from English
|
90 |
+
|
91 |
+
````python
|
92 |
+
code_english = """
|
93 |
+
Here's a detailed Python code solution for implementing a Convolutional Neural Network (CNN) for image classification on the CIFAR-10 dataset:
|
94 |
+
|
95 |
+
```python
|
96 |
+
import tensorflow as tf
|
97 |
+
from tensorflow.keras.datasets import cifar10
|
98 |
+
from tensorflow.keras.models import Sequential
|
99 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
|
100 |
+
from tensorflow.keras.optimizers import Adam
|
101 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
102 |
+
from sklearn.model_selection import GridSearchCV
|
103 |
+
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
|
104 |
+
import numpy as np
|
105 |
+
import matplotlib.pyplot as plt
|
106 |
+
|
107 |
+
# Load and preprocess the CIFAR-10 dataset
|
108 |
+
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
|
109 |
+
x_train = x_train.astype('float32') / 255.0
|
110 |
+
x_test = x_test.astype('float32') / 255.0
|
111 |
+
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
|
112 |
+
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
|
113 |
+
|
114 |
+
# Define the CNN architecture
|
115 |
+
def create_model(learning_rate=0.001, dropout_rate=0.5, num_filters=32):
|
116 |
+
model = Sequential()
|
117 |
+
model.add(Conv2D(num_filters, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
|
118 |
+
model.add(Conv2D(num_filters, (3, 3), activation='relu'))
|
119 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
120 |
+
model.add(Dropout(dropout_rate))
|
121 |
+
|
122 |
+
model.add(Conv2D(num_filters * 2, (3, 3), activation='relu', padding='same'))
|
123 |
+
model.add(Conv2D(num_filters * 2, (3, 3), activation='relu'))
|
124 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
125 |
+
model.add(Dropout(dropout_rate))
|
126 |
+
|
127 |
+
model.add(Conv2D(num_filters * 4, (3, 3), activation='relu', padding='same'))
|
128 |
+
model.add(Conv2D(num_filters * 4, (3, 3), activation='relu'))
|
129 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
130 |
+
model.add(Dropout(dropout_rate))
|
131 |
+
|
132 |
+
model.add(Flatten())
|
133 |
+
model.add(Dense(512, activation='relu'))
|
134 |
+
model.add(Dropout(dropout_rate))
|
135 |
+
model.add(Dense(10, activation='softmax'))
|
136 |
+
|
137 |
+
optimizer = Adam(learning_rate=learning_rate)
|
138 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
139 |
+
return model
|
140 |
+
```
|
141 |
+
|
142 |
+
Explanation:
|
143 |
+
|
144 |
+
a) Data preprocessing:
|
145 |
+
- The CIFAR-10 dataset is loaded using `cifar10.load_data()`.
|
146 |
+
- The pixel values of the images are normalized to the range [0, 1] by dividing them by 255.
|
147 |
+
- The labels are converted to categorical format using `to_categorical()`.
|
148 |
+
|
149 |
+
b) CNN Architecture:
|
150 |
+
- The CNN architecture consists of three convolutional blocks, each containing two convolutional layers followed by a max-pooling layer and dropout regularization.
|
151 |
+
- The number of filters in each convolutional block is increased progressively (32, 64, 128).
|
152 |
+
- ReLU activation function is used in the convolutional layers.
|
153 |
+
- The final layers are fully connected, with a softmax activation for multi-class classification.
|
154 |
+
"""
|
155 |
+
|
156 |
+
input_ids = tokenizer.encode(f'terjemah ke Melayu: {code_english}{tokenizer.eos_token}', return_tensors = 'pt')
|
157 |
+
outputs = model.generate(input_ids, max_length = 1024)
|
158 |
+
outputs = [i for i in outputs[0] if i not in all_special_ids]
|
159 |
+
print(tokenizer.decode(outputs, spaces_between_special_tokens = False))
|
160 |
+
````
|
161 |
+
|
162 |
+
Output,
|
163 |
+
|
164 |
+
````
|
165 |
+
Berikut adalah penyelesaian kod Python yang terperinci untuk melaksanakan Rangkaian Neural Konvolusi (CNN) untuk pengelasan imej pada dataset CIFAR-10:
|
166 |
+
|
167 |
+
```python
|
168 |
+
import tensorflow as tf
|
169 |
+
from tensorflow.keras.datasets import cifar10
|
170 |
+
from tensorflow.keras.models import Sequential
|
171 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
|
172 |
+
from tensorflow.keras.optimizers import Adam
|
173 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
174 |
+
from sklearn.model_selection import GridSearchCV
|
175 |
+
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
|
176 |
+
import numpy as np
|
177 |
+
import matplotlib.pyplot as plt
|
178 |
+
|
179 |
+
# Muatkan dan praproses dataset CIFAR-10
|
180 |
+
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
|
181 |
+
x_train = x_train.astype('float32') / 255.0
|
182 |
+
x_test = x_test.astype('float32') / 255.0
|
183 |
+
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
|
184 |
+
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
|
185 |
+
|
186 |
+
# Tentukan senibina CNN
|
187 |
+
def create_model(learning_rate=0.001, dropout_rate=0.5, num_filters=32):
|
188 |
+
model = Sequential()
|
189 |
+
model.add(Conv2D(num_filters, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
|
190 |
+
model.add(Conv2D(num_filters, (3, 3), activation='relu'))
|
191 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
192 |
+
model.add(Dropout(dropout_rate))
|
193 |
+
|
194 |
+
model.add(Conv2D(num_filters * 2, (3, 3), activation='relu', padding='same'))
|
195 |
+
model.add(Conv2D(num_filters * 2, (3, 3), activation='relu'))
|
196 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
197 |
+
model.add(Dropout(dropout_rate))
|
198 |
+
|
199 |
+
model.add(Conv2D(num_filters * 4, (3, 3), activation='relu', padding='same'))
|
200 |
+
model.add(Conv2D(num_filters * 4, (3, 3), activation='relu'))
|
201 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
202 |
+
model.add(Dropout(dropout_rate))
|
203 |
+
|
204 |
+
model.add(Flatten())
|
205 |
+
model.add(Dense(512, activation='relu'))
|
206 |
+
model.add(Dropout(dropout_rate))
|
207 |
+
model.add(Dense(10, activation='softmax'))
|
208 |
+
|
209 |
+
optimizer = Adam(learning_rate=learning_rate)
|
210 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
211 |
+
return model
|
212 |
+
```
|
213 |
+
|
214 |
+
Penjelasan:
|
215 |
+
|
216 |
+
a) Prapemprosesan data:
|
217 |
+
- Dataset CIFAR-10 dimuatkan menggunakan `cifar10.load_data()`.
|
218 |
+
- Nilai piksel imej dinormalisasi ke julat [0, 1] dengan membahagikannya dengan 255.
|
219 |
+
- Label ditukar kepada format kategori menggunakan `to_categorical()`.
|
220 |
+
|
221 |
+
b) Senibina CNN:
|
222 |
+
- Senibina CNN terdiri daripada tiga blok konvolusi, setiap satu mengandungi dua lapisan konvolusi diikuti oleh lapisan max-pooling dan regularisasi dropout.
|
223 |
+
- Bilangan penapis dalam setiap blok konvolusi meningkat secara beransur-ansur (32, 64, 128).
|
224 |
+
-
|
225 |
+
````
|
226 |
+
|
227 |
+
**Increase `max_length` should complete the result**.
|
228 |
+
|
229 |
+
### from Indonesian
|
230 |
+
|
231 |
+
````python
|
232 |
+
code_indon = """
|
233 |
+
`Untuk menggunakan numpy, pertama-tama, Anda perlu menginstalnya melalui pip. Anda dapat melakukannya dengan menjalankan perintah `pip install numpy` di terminal Anda.
|
234 |
+
Setelah numpy terinstal, Anda dapat mengimpor modul numpy dengan menambahkan baris `import numpy as np` di awal program Anda.
|
235 |
+
Berikut adalah contoh beberapa operasi dasar numpy:
|
236 |
+
``` python
|
237 |
+
import numpy as np
|
238 |
+
# membuat array numpy dari list
|
239 |
+
my_list = [1, 2, 3, 4, 5]
|
240 |
+
my_array = np.array(my_list)
|
241 |
+
# membuat array numpy dengan rentang nilai tertentu
|
242 |
+
my_range = np.arange(0, 10, 2) # nilai awal, nilai akhir, dan loncatan
|
243 |
+
# membuat array numpy dengan nilai acak
|
244 |
+
my_random_array = np.random.rand(3, 3) # 3 baris dan 3 kolom
|
245 |
+
# mengakses elemen array numpy
|
246 |
+
print(my_array[0]) # mengakses elemen pertama
|
247 |
+
# melakukan operasi matematika pada array numpy
|
248 |
+
my_array = my_array + 1 # menambah setiap elemen dengan 1
|
249 |
+
my_array = my_array * 2 # mengalikan setiap elemen dengan 2
|
250 |
+
# mengubah bentuk array numpy
|
251 |
+
my_array = np.reshape(my_array, (2, 5)) # menjadi array 2D dengan 2 baris dan 5 kolom
|
252 |
+
```
|
253 |
+
Itulah beberapa operasi dasar numpy. Anda dapat menemukan dokumentasi resmi numpy di https://numpy.org/doc/stable/.
|
254 |
+
"""
|
255 |
+
input_ids = tokenizer.encode(f'terjemah ke Melayu: {s}{tokenizer.eos_token}', return_tensors = 'pt')
|
256 |
+
outputs = model.generate(input_ids, max_length = 1024)
|
257 |
+
outputs = [i for i in outputs[0] if i not in all_special_ids]
|
258 |
+
print(tokenizer.decode(outputs, spaces_between_special_tokens = False))
|
259 |
+
````
|
260 |
+
|
261 |
+
Output,
|
262 |
+
|
263 |
+
````
|
264 |
+
`Untuk menggunakan numpy, pertama sekali, anda perlu memasangnya melalui pip. Anda boleh melakukannya dengan menjalankan perintah `pip install numpy` di terminal anda.
|
265 |
+
Setelah numpy dipasang, anda boleh mengimport modul numpy dengan menambahkan baris `import numpy as np` pada permulaan program anda.
|
266 |
+
Berikut adalah contoh beberapa operasi asas numpy:
|
267 |
+
``` python
|
268 |
+
import numpy as np
|
269 |
+
# membuat array numpy dari senarai
|
270 |
+
my_list = [1, 2, 3, 4, 5]
|
271 |
+
my_array = np.array(my_list)
|
272 |
+
# membuat array numpy dengan nilai tertentu
|
273 |
+
my_range = np.arange(0, 10, 2) # nilai awal, nilai akhir, dan lompat
|
274 |
+
# membuat array numpy dengan nilai rawak
|
275 |
+
my_random_array = np.random.rand(3, 3) # 3 baris dan 3 lajur
|
276 |
+
# mengakses elemen array numpy
|
277 |
+
print(my_array[0]) # mengakses elemen pertama
|
278 |
+
# melakukan operasi matematik pada array numpy
|
279 |
+
my_array = my_array + 1 # menambah setiap elemen dengan 1
|
280 |
+
my_array = my_array * 2 # mendarab setiap elemen dengan 2
|
281 |
+
# mengubah bentuk array numpy
|
282 |
+
my_array = np.reshape(my_array, (2, 5)) # menjadi array 2D dengan 2 baris dan 5 lajur
|
283 |
+
```
|
284 |
+
Itulah beberapa operasi asas numpy. Anda boleh menemui dokumentasi rasmi numpy di https://numpy.org/doc/stable/.
|
285 |
+
````
|
286 |
+
|
287 |
## how to generate more randomly?
|
288 |
|
289 |
Use random sampling, read more at https://huggingface.co/blog/how-to-generate#sampling
|
|
|
313 |
print(o.strip(), '\n------\n')
|
314 |
```
|
315 |
|
316 |
+
Output,
|
317 |
+
|
318 |
```
|
319 |
Tingu ja la, mungkin ada buyuk-buyuk kasi betripak bah, sidak yang kritik pasal bajet 2025 yang papai dekat Anwar tu? Kin panas betul la cerita hari tu. Dorang ni main otak-otak ja, tapi orang tingu ja kerajaan sudah ndapok. Tingu ja la, mungkin ada buyuk-buyuk yang kita nda tau. Bah, mungkin ada buyuk-buyuk yang kita nda tau. Anu bah, mungkin ada buyuk yang kita nda tau. Ndapapa kalau nda faham lagi? Anu bah, kita mesti bikin kerajaan jadi lebih banyak tempat yang lagi banyak lagi yang boleh buat negeri kita jadi lebih banyak.
|
320 |
------
|