metercai's picture
Add files using upload-large-folder tool
8bddf3a verified
raw
history blame
16.6 kB
from typing import Optional, Union, Dict, Any, List
import torch
import math
import PIL.Image
import PIL.ImageSequence
import numpy as np
import PIL
from PIL import Image
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers import AutoImageProcessor
from transformers.image_transforms import to_channel_dimension_format
from transformers.image_utils import (
ImageInput,
make_list_of_images,
valid_images,
is_torch_tensor,
is_batched,
to_numpy_array,
infer_channel_dimension_format,
ChannelDimension
)
def recursive_converter(converter, value):
if isinstance(value, list):
new_value = []
for v in value:
new_value += [recursive_converter(converter, v)]
return new_value
else:
return converter(value)
class MiniCPMVBatchFeature(BatchFeature):
r"""
Extend from BatchFeature for supporting various image size
"""
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
super().__init__(data)
self.convert_to_tensors(tensor_type=tensor_type)
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
if tensor_type is None:
return self
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
def converter(value):
try:
if not is_tensor(value):
tensor = as_tensor(value)
return tensor
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
for key, value in self.items():
self[key] = recursive_converter(converter, value)
return self
def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
requires_backends(self, ["torch"])
import torch
def cast_tensor(v):
# check if v is a floating point
if torch.is_floating_point(v):
# cast and send to device
return v.to(*args, **kwargs)
elif device is not None:
return v.to(device=device)
else:
return v
new_data = {}
device = kwargs.get("device")
# Check if the args are a device or a dtype
if device is None and len(args) > 0:
# device should be always the first argument
arg = args[0]
if is_torch_dtype(arg):
# The first argument is a dtype
pass
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
device = arg
else:
# it's something else
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
for k, v in self.items():
new_data[k] = recursive_converter(cast_tensor, v)
self.data = new_data
return self
class MiniCPMVImageProcessor(BaseImageProcessor):
model_input_names = ["pixel_values"]
def __init__(
self,
max_slice_nums=9,
scale_resolution=448,
patch_size=14,
**kwargs):
super().__init__(**kwargs)
self.max_slice_nums = max_slice_nums
self.scale_resolution = scale_resolution
self.patch_size = patch_size
self.use_image_id = kwargs.pop("use_image_id", False)
self.image_feature_size = kwargs.pop("image_feature_size", 64)
self.im_start_token = kwargs.pop("im_start", "<image>")
self.im_end_token = kwargs.pop("im_end", "</image>")
self.slice_start_token = kwargs.pop("slice_start", "<slice>")
self.slice_end_token = kwargs.pop("slice_end", "</slice>")
self.unk_token = kwargs.pop("unk", "<unk>")
self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
self.slice_mode = kwargs.pop("slice_mode", True)
self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
self.version = kwargs.pop("version", 2.0)
def ensure_divide(self, length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(self,
original_size,
scale_resolution,
patch_size,
allow_upscale=False):
width, height = original_size
if (width * height >
scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = self.ensure_divide(width, patch_size)
best_height = self.ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(self,
original_size,
grid,
scale_resolution,
patch_size,
allow_upscale=False):
width, height = original_size
grid_x, grid_y = grid
refine_width = self.ensure_divide(width, grid_x)
refine_height = self.ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = self.find_best_resize((grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(self, image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def slice_image(
self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
):
original_size = image.size
source_image = None
best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
patches = []
if best_grid is None:
# dont need to slice, upsample
best_size = self.find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
else:
# source image, down-sampling and ensure divided by patch_size
best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
refine_size = self.get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
patches = self.split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def get_grid_placeholder(self, grid):
if grid is None:
return ""
slice_image_placeholder = (
self.slice_start_token
+ self.unk_token * self.image_feature_size
+ self.slice_end_token
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(slice_image_placeholder)
slices.append("".join(lines))
slice_placeholder = "\n".join(slices)
return slice_placeholder
def get_image_id_placeholder(self, idx=0):
return f"{self.im_id_start}{idx}{self.im_id_end}"
def get_sliced_images(self, image, max_slice_nums=None):
slice_images = []
if not self.slice_mode:
return [image]
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
assert max_slice_nums > 0
source_image, patches, sliced_grid = self.slice_image(
image,
max_slice_nums, # default: 9
self.scale_resolution, # default: 448
self.patch_size # default: 14
)
slice_images.append(source_image)
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
return slice_images
def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
original_width, original_height = image_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
if multiple <= 1 or nerver_split:
return None
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
candidate_grids = []
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
return best_grid
def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
assert max_slice_nums > 0
grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
image_placeholder = (
self.im_start_token
+ self.unk_token * self.image_feature_size
+ self.im_end_token
)
use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
if use_image_id:
final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
else:
final_placeholder = image_placeholder
if self.slice_mode:
final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
return final_placeholder
def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
"""
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
needed.
Args:
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
The image to convert to the PIL Image format.
rescale (`bool`, *optional*):
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
default to `True` if the image type is a floating type, `False` otherwise.
"""
if isinstance(image, PIL.Image.Image):
return image
if is_torch_tensor(image):
image = image.numpy()
if isinstance(image, np.ndarray):
if rescale is None:
# rescale default to the array being of floating type.
rescale = isinstance(image.flat[0], np.floating)
# If the channel as been moved to first dim, we put it back at the end.
if image.ndim == 3 and image.shape[0] in [1, 3]:
image = image.transpose(1, 2, 0)
if rescale:
image = image * 255
image = image.astype(np.uint8)
return PIL.Image.fromarray(image)
return image
def reshape_by_patch(self, image):
"""
:param image: shape [3, H, W]
:param patch_size:
:return: [3, patch_size, HW/patch_size]
"""
image = torch.from_numpy(image)
patch_size = self.patch_size
patches = torch.nn.functional.unfold(
image,
(patch_size, patch_size),
stride=(patch_size, patch_size)
)
patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
return patches.numpy()
def preprocess(
self,
images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
max_slice_nums: int = None,
return_tensors: Optional[Union[str, TensorType]] = None,
) -> MiniCPMVBatchFeature:
if isinstance(images, Image.Image):
images_list = [[images]]
elif isinstance(images[0], Image.Image):
images_list = [images]
else:
images_list = images
new_images_list = []
image_sizes_list = []
tgt_sizes_list = []
for _images in images_list:
if _images is None or len(_images) == 0:
new_images_list.append([])
image_sizes_list.append([])
tgt_sizes_list.append([])
continue
if not valid_images(_images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
_images = [self.to_pil_image(image).convert("RGB") for image in _images]
input_data_format = infer_channel_dimension_format(np.array(_images[0]))
new_images = []
image_sizes = [image.size for image in _images]
tgt_sizes = []
for image in _images:
image_patches = self.get_sliced_images(image, max_slice_nums)
image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
image_patches = [
self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
for image in image_patches
]
image_patches = [
to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
for image in image_patches
]
for slice_image in image_patches:
new_images.append(self.reshape_by_patch(slice_image))
tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
if tgt_sizes:
tgt_sizes = np.vstack(tgt_sizes)
new_images_list.append(new_images)
image_sizes_list.append(image_sizes)
tgt_sizes_list.append(tgt_sizes)
return MiniCPMVBatchFeature(
data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list}, tensor_type=return_tensors
)
AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)