File size: 8,244 Bytes
f953fd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import nltk
from nltk.tag import PerceptronTagger
from stable_whisper.result import WordTiming
import numpy as np
import torch
def bind_wordtimings_to_tags(wt: list[WordTiming]):
raw_words = [w.word for w in wt]
tokenized_raw_words = []
tokens_wordtiming_map = []
for word in raw_words:
tokens_word = nltk.word_tokenize(word)
tokenized_raw_words.extend(tokens_word)
tokens_wordtiming_map.append(len(tokens_word))
tagged_words = nltk.pos_tag(tokenized_raw_words)
grouped_tags = []
for k in tokens_wordtiming_map:
grouped_tags.append(tagged_words[:k])
tagged_words = tagged_words[k:]
tags_only = [tuple([w[1] for w in t]) for t in grouped_tags]
wordtimings_with_tags = zip(wt, tags_only)
return list(wordtimings_with_tags)
def embed_tag_list(tags: list[str]):
tags_dict = get_upenn_tags_dict()
eye = np.eye(len(tags_dict))
return eye[np.array([tags_dict[tag] for tag in tags])]
def lookup_tag_list(tags: list[str]):
tags_dict = get_upenn_tags_dict()
return np.array([tags_dict[tag] for tag in tags], dtype=int)
def tag_training_data(filename: str):
with open(filename, "r") as f:
segmented_lines = f.readlines()
segmented_lines = [s.strip() for s in segmented_lines if s.strip() != ""]
# Regain the full text for more accurate tagging.
full_text = " ".join(segmented_lines)
tokenized_full_text = nltk.word_tokenize(full_text)
tagged_full_text = nltk.pos_tag(tokenized_full_text)
tagged_full_text_copy = tagged_full_text
reconstructed_tags = []
for line in segmented_lines:
line_nospace = line.replace(r" ", "")
found = False
for i in range(len(tagged_full_text_copy)+1):
rejoined = "".join([x[0] for x in tagged_full_text_copy[:i]])
if line_nospace == rejoined:
found = True
reconstructed_tags.append(tagged_full_text_copy[:i])
tagged_full_text_copy = tagged_full_text_copy[i:]
continue;
if found == False:
print("Panic. Cannot match further.")
print(f"Was trying to match: {line}")
print(tagged_full_text_copy)
return reconstructed_tags
def get_upenn_tags_dict():
tagger = PerceptronTagger()
tags = list(tagger.tagdict.values())
# https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
tags.extend(["CC", "CD", "DT", "EX", "FW", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NN", "NNS", "NNP", "NNPS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB"])
tags = list(set(tags))
tags.sort()
tags.append("BREAK")
tags_dict = dict()
for index, tag in enumerate(tags):
tags_dict[tag] = index
return tags_dict
def parse_tags(reconstructed_tags):
"""
Parse reconstructed tags into input/tag datapoint.
In the original plan, this type of output is suitable for bidirectional LSTM.
Input:
reconstured_tags:
Tagged segments, from tag_training_data()
Example: [
[('You', 'PRP'), ("'re", 'VBP'), ('back', 'RB'), ('again', 'RB'), ('?', '.')],
[('You', 'PRP'),("'ve", 'VBP'), ('been', 'VBN'), ('consuming', 'VBG'), ('a', 'DT'), ('lot', 'NN'), ('of', 'IN'), ('tech', 'JJ'), ('news', 'NN'), ('lately', 'RB'), ('.', '.')]
...
]
Output:
(input_tokens, output_tag)
input_tokens:
A sequence of tokens, each number corresponds to a type of word.
Example: [25, 38, 27, 27, 6, 25, 38, 37, 36, 10, 19, 13, 14, 19, 27, 6]
output_tags:
A sequence of 0 and 1, indicating whether a break should be inserted AFTER each location.
Example: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
"""
tags_dict = get_upenn_tags_dict()
all_tags_sequence = [[y[1] for y in segments] + ['BREAK'] for segments in reconstructed_tags]
all_tags_sequence = [tag for tags in all_tags_sequence for tag in tags]
input_tokens = []
output_tag = []
for token in all_tags_sequence:
if token != 'BREAK':
input_tokens.append(tags_dict[token])
output_tag.append(0)
else:
output_tag[-1] = 1
return input_tokens, output_tag
def embed_segments(tagged_segments):
tags, tags_dict = get_upenn_tags_dict()
for index, tag in enumerate(tags):
tags_dict[tag] = index
result_embedding = []
classes = len(tags)
eye = np.eye(classes)
for segment in tagged_segments:
targets = np.array([tags_dict[tag] for word, tag in segment])
segment_embedding = eye[targets]
result_embedding.append(segment_embedding)
result_embedding.append(np.array([eye[tags_dict["BREAK"]]]))
result_embedding = np.concatenate(result_embedding)
return result_embedding, tags_dict
def window_embedded_segments_rnn(embeddings, tags_dict):
datapoints = []
eye = np.eye(len(tags_dict))
break_vector = eye[tags_dict["BREAK"]]
for i in range(1, embeddings.shape[0]):
# Should we insert a break BEFORE token i?
if (embeddings[i] == break_vector).all():
continue
else:
prev_sequence = embeddings[:i]
if (prev_sequence[-1] == break_vector).all():
# It should break here. Remove the break and set tag as 1.
prev_sequence = prev_sequence[:-1]
tag = 1
else:
# It should not break here.
tag = 0
entire_sequence = np.concatenate((prev_sequence, np.array([embeddings[i]])))
datapoints.append((entire_sequence, tag))
return datapoints
def print_dataset(datapoints, tags_dict, tokenized_full_text):
eye = np.eye(len(tags_dict))
break_vector = eye[tags_dict["BREAK"]]
for input, tag in datapoints:
if tag == 1:
print("[1] ", end='')
else:
print("[0] ", end='')
count = 0
for v in input:
if not (v == break_vector).all():
count += 1
# print(input)
# count = np.count_nonzero(input != break_vector)
segment = tokenized_full_text[:count]
print(segment)
from stable_whisper.result import Segment # Just for typing
def get_indicies(segment: Segment, model, device, threshold):
word_list = segment.words
tagged_wordtiming = bind_wordtimings_to_tags(word_list)
tag_list = [tag for twt in tagged_wordtiming for tag in twt[1]]
tag_per_word = [len(twt[1]) for twt in tagged_wordtiming]
embedded_tags = embed_tag_list(tag_list)
embedded_tags = torch.from_numpy(embedded_tags).float()
output = model(embedded_tags[None, :].to(device))
list_output = output.detach().cpu().numpy().tolist()[0]
current_index = 0
cut_indicies = []
for index, tags_count in enumerate(tag_per_word):
tags = list_output[current_index:current_index+tags_count]
if max(tags) > threshold:
cut_indicies.append(index)
current_index += tags_count
return cut_indicies
def get_indicies_autoembed(segment: Segment, model, device, threshold):
word_list = segment.words
tagged_wordtiming = bind_wordtimings_to_tags(word_list)
tag_list = [tag for twt in tagged_wordtiming for tag in twt[1]]
tag_per_word = [len(twt[1]) for twt in tagged_wordtiming]
embedded_tags = lookup_tag_list(tag_list)
embedded_tags = torch.from_numpy(embedded_tags).int().to(device)
output = model(embedded_tags[None, :].to(device))
list_output = output.detach().cpu().numpy().tolist()[0]
current_index = 0
cut_indicies = []
for index, tags_count in enumerate(tag_per_word):
tags = list_output[current_index:current_index+tags_count]
if max(tags) > threshold:
cut_indicies.append(index)
current_index += tags_count
return cut_indicies
|