|
#include <mutex> |
|
|
|
#include <ATen/Parallel.h> |
|
|
|
#include "operator.cuh" |
|
#include "rspmm.h" |
|
|
|
namespace at { |
|
|
|
|
|
|
|
|
|
using namespace at::internal; |
|
|
|
void rspmm_forward_check(CheckedFrom c, const TensorArg &edge_index_arg, const TensorArg &edge_type_arg, |
|
const TensorArg &edge_weight_arg, const TensorArg &relation_arg, const TensorArg &input_arg) { |
|
checkDim(c, edge_index_arg, 2); |
|
checkDim(c, edge_type_arg, 1); |
|
checkDim(c, edge_weight_arg, 1); |
|
checkDim(c, relation_arg, 2); |
|
checkDim(c, input_arg, 2); |
|
checkSameType(c, edge_index_arg, edge_type_arg); |
|
checkAllSameType(c, {edge_weight_arg, relation_arg, input_arg}); |
|
checkSize(c, edge_index_arg, 0, 2); |
|
checkSize(c, edge_type_arg, {edge_index_arg->size(1)}); |
|
checkSize(c, edge_weight_arg, {edge_index_arg->size(1)}); |
|
checkSize(c, relation_arg, 1, input_arg->size(1)); |
|
} |
|
|
|
void rspmm_backward_check(CheckedFrom c, const TensorArg &edge_index_arg, const TensorArg &edge_type_arg, |
|
const TensorArg &edge_weight_arg, const TensorArg &relation_arg, const TensorArg &input_arg, |
|
const TensorArg &output_arg, const TensorArg &output_grad_arg) { |
|
rspmm_forward_check(c, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg); |
|
checkDim(c, output_arg, 2); |
|
checkSameSize(c, output_arg, output_grad_arg); |
|
checkAllSameType(c, {input_arg, output_arg, output_grad_arg}); |
|
checkSize(c, output_arg, 1, input_arg->size(1)); |
|
} |
|
|
|
Tensor ind2ptr(const Tensor &index, int size) { |
|
|
|
|
|
Tensor num_per_index = at::zeros({size}, index.options().dtype(at::ScalarType::Int)); |
|
num_per_index.scatter_add_(0, index, at::ones(index.sizes(), num_per_index.options())); |
|
num_per_index = num_per_index.toType(at::ScalarType::Long); |
|
Tensor pointer = num_per_index.cumsum(0) - num_per_index; |
|
return pointer; |
|
} |
|
|
|
template <class scalar_t, class NaryOp, class BinaryOp> |
|
void rspmm_forward_out_cpu(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind, |
|
const scalar_t *weight, const scalar_t *relation, const scalar_t *input, |
|
scalar_t *output, |
|
int64_t num_row, int64_t nnz, int64_t dim) { |
|
parallel_for(0, num_row, 0, [&](int64_t row_start, int64_t row_end) { |
|
for (int64_t row = row_start; row < row_end; row++) { |
|
for (int64_t d = 0; d < dim; d++) |
|
output[row * dim + d] = NaryOp::zero; |
|
|
|
int64_t ptr_start = row_ptr[row]; |
|
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz; |
|
for (int64_t ptr = ptr_start; ptr < ptr_end; ptr++) { |
|
int64_t col = col_ind[ptr]; |
|
int64_t layer = layer_ind[ptr]; |
|
scalar_t w = weight[ptr]; |
|
for (int64_t d = 0; d < dim; d++) { |
|
scalar_t x = BinaryOp::forward(relation[layer * dim + d], input[col * dim + d]); |
|
scalar_t y = w * x; |
|
scalar_t &out = output[row * dim + d]; |
|
out = NaryOp::forward(out, y); |
|
} |
|
} |
|
} |
|
}); |
|
} |
|
|
|
template <class scalar_t, class NaryOp, class BinaryOp> |
|
void rspmm_backward_out_cpu(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind, |
|
const scalar_t *weight, const scalar_t *relation, const scalar_t *input, |
|
const scalar_t *output, const scalar_t *output_grad, |
|
scalar_t *weight_grad, scalar_t *relation_grad, scalar_t *input_grad, |
|
int64_t num_row, int64_t nnz, int64_t dim, |
|
std::vector<std::mutex> &relation_mutex, std::vector<std::mutex> &input_mutex) { |
|
parallel_for(0, num_row, 0, [&](int64_t row_start, int64_t row_end) { |
|
for (int64_t row = row_start; row < row_end; row++) { |
|
int64_t ptr_start = row_ptr[row]; |
|
int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz; |
|
for (int64_t ptr = ptr_start; ptr < ptr_end; ptr++) { |
|
int64_t col = col_ind[ptr]; |
|
int64_t layer = layer_ind[ptr]; |
|
scalar_t w = weight[ptr]; |
|
scalar_t w_grad = 0; |
|
for (int64_t d = 0; d < dim; d++) { |
|
scalar_t rel = relation[layer * dim + d]; |
|
scalar_t in = input[col * dim + d]; |
|
scalar_t out = output[row * dim + d]; |
|
scalar_t out_grad = output_grad[row * dim + d]; |
|
scalar_t x = BinaryOp::forward(rel, in); |
|
scalar_t y = w * x; |
|
scalar_t dx_drel = BinaryOp::backward_lhs(rel, in); |
|
scalar_t dx_din = BinaryOp::backward_rhs(rel, in); |
|
scalar_t dout_dy = NaryOp::backward(out, y); |
|
scalar_t dy_dw = x; |
|
scalar_t dy_dx = w; |
|
w_grad += out_grad * dout_dy * dy_dw; |
|
{ |
|
std::lock_guard<std::mutex> lock(relation_mutex[layer * dim + d]); |
|
relation_grad[layer * dim + d] += out_grad * dout_dy * dy_dx * dx_drel; |
|
} |
|
{ |
|
std::lock_guard<std::mutex> lock(input_mutex[col * dim + d]); |
|
input_grad[col * dim + d] += out_grad * dout_dy * dy_dx * dx_din; |
|
} |
|
} |
|
weight_grad[ptr] = w_grad; |
|
} |
|
} |
|
}); |
|
} |
|
|
|
template <template<class> class NaryOp, template<class> class BinaryOp> |
|
Tensor rspmm_forward_cpu(const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_, |
|
const Tensor &relation_, const Tensor &input_) { |
|
constexpr const char *fn_name = "rspmm_forward_cpu"; |
|
TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2), |
|
edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4), |
|
input_arg(input_, "input", 5); |
|
|
|
rspmm_forward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg); |
|
checkDeviceType(fn_name, {edge_index_, edge_type_, edge_weight_, relation_, input_}, kCPU); |
|
|
|
const Tensor edge_index = edge_index_.contiguous(); |
|
const Tensor edge_type = edge_type_.contiguous(); |
|
const Tensor edge_weight = edge_weight_.contiguous(); |
|
const Tensor relation = relation_.contiguous(); |
|
const Tensor input = input_.contiguous(); |
|
|
|
int64_t nnz = edge_index.size(0); |
|
int64_t num_row = input.size(0); |
|
int64_t dim = input.size(1); |
|
Tensor output = at::empty({num_row, dim}, input.options()); |
|
|
|
Tensor row_ind = edge_index.select(0, 0); |
|
Tensor row_ptr = ind2ptr(row_ind, num_row); |
|
Tensor col_ind = edge_index.select(0, 1); |
|
Tensor layer_ind = edge_type; |
|
|
|
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_forward_cpu", [&] { |
|
rspmm_forward_out_cpu<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>( |
|
row_ptr.data_ptr<int64_t>(), |
|
col_ind.data_ptr<int64_t>(), |
|
layer_ind.data_ptr<int64_t>(), |
|
edge_weight.data_ptr<scalar_t>(), |
|
relation.data_ptr<scalar_t>(), |
|
input.data_ptr<scalar_t>(), |
|
output.data_ptr<scalar_t>(), |
|
num_row, nnz, dim |
|
); |
|
}); |
|
|
|
return output; |
|
} |
|
|
|
template <template<class> class NaryOp, template<class> class BinaryOp> |
|
std::tuple<Tensor, Tensor, Tensor> rspmm_backward_cpu( |
|
const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_, |
|
const Tensor &relation_, const Tensor &input_, const Tensor &output_, const Tensor &output_grad_) { |
|
constexpr const char *fn_name = "rspmm_backward_cpu"; |
|
TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2), |
|
edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4), |
|
input_arg(input_, "input", 5), output_arg(output_, "output", 6), |
|
output_grad_arg(output_grad_, "output_grad", 7); |
|
|
|
rspmm_backward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg, |
|
output_arg, output_grad_arg); |
|
checkDeviceType(fn_name, {edge_index_, edge_type_, edge_weight_, relation_, input_, output_, output_grad_}, kCPU); |
|
|
|
const Tensor edge_index = edge_index_.contiguous(); |
|
const Tensor edge_type = edge_type_.contiguous(); |
|
const Tensor edge_weight = edge_weight_.contiguous(); |
|
const Tensor relation = relation_.contiguous(); |
|
const Tensor input = input_.contiguous(); |
|
const Tensor output = output_.contiguous(); |
|
const Tensor output_grad = output_grad_.contiguous(); |
|
|
|
int64_t nnz = edge_index.size(0); |
|
int64_t num_row = input.size(0); |
|
int64_t dim = input.size(1); |
|
Tensor weight_grad = at::zeros_like(edge_weight); |
|
Tensor relation_grad = at::zeros_like(relation); |
|
Tensor input_grad = at::zeros_like(input); |
|
|
|
Tensor row_ind = edge_index.select(0, 0); |
|
Tensor row_ptr = ind2ptr(row_ind, num_row); |
|
Tensor col_ind = edge_index.select(0, 1); |
|
Tensor layer_ind = edge_type; |
|
std::vector<std::mutex> relation_mutex(relation.numel()); |
|
std::vector<std::mutex> input_mutex(input.numel()); |
|
|
|
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cpu", [&] { |
|
rspmm_backward_out_cpu<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>( |
|
row_ptr.data_ptr<int64_t>(), |
|
col_ind.data_ptr<int64_t>(), |
|
layer_ind.data_ptr<int64_t>(), |
|
edge_weight.data_ptr<scalar_t>(), |
|
relation.data_ptr<scalar_t>(), |
|
input.data_ptr<scalar_t>(), |
|
output.data_ptr<scalar_t>(), |
|
output_grad.data_ptr<scalar_t>(), |
|
weight_grad.data_ptr<scalar_t>(), |
|
relation_grad.data_ptr<scalar_t>(), |
|
input_grad.data_ptr<scalar_t>(), |
|
num_row, nnz, dim, |
|
relation_mutex, input_mutex |
|
); |
|
}); |
|
|
|
return std::make_tuple(weight_grad, relation_grad, input_grad); |
|
} |
|
|
|
#define DECLARE_FORWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \ |
|
Tensor rspmm_##ADD##_##MUL##_forward_cpu( \ |
|
const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \ |
|
const Tensor &relation, const Tensor &input) { \ |
|
return rspmm_forward_cpu<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input); \ |
|
} |
|
|
|
#define DECLARE_BACKWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \ |
|
std::tuple<Tensor, Tensor, Tensor> rspmm_##ADD##_##MUL##_backward_cpu( \ |
|
const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \ |
|
const Tensor &relation, const Tensor &input, const Tensor &output, const Tensor &output_grad) { \ |
|
return rspmm_backward_cpu<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input, \ |
|
output, output_grad); \ |
|
} |
|
|
|
DECLARE_FORWARD_IMPL(add, mul, NaryAdd, BinaryMul) |
|
DECLARE_BACKWARD_IMPL(add, mul, NaryAdd, BinaryMul) |
|
|
|
DECLARE_FORWARD_IMPL(min, mul, NaryMin, BinaryMul) |
|
DECLARE_BACKWARD_IMPL(min, mul, NaryMin, BinaryMul) |
|
|
|
DECLARE_FORWARD_IMPL(max, mul, NaryMax, BinaryMul) |
|
DECLARE_BACKWARD_IMPL(max, mul, NaryMax, BinaryMul) |
|
|
|
DECLARE_FORWARD_IMPL(add, add, NaryAdd, BinaryAdd) |
|
DECLARE_BACKWARD_IMPL(add, add, NaryAdd, BinaryAdd) |
|
|
|
DECLARE_FORWARD_IMPL(min, add, NaryMin, BinaryAdd) |
|
DECLARE_BACKWARD_IMPL(min, add, NaryMin, BinaryAdd) |
|
|
|
DECLARE_FORWARD_IMPL(max, add, NaryMax, BinaryAdd) |
|
DECLARE_BACKWARD_IMPL(max, add, NaryMax, BinaryAdd) |
|
|
|
} |
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { |
|
m.def("rspmm_add_mul_forward_cpu", &at::rspmm_add_mul_forward_cpu); |
|
m.def("rspmm_add_mul_backward_cpu", &at::rspmm_add_mul_backward_cpu); |
|
m.def("rspmm_min_mul_forward_cpu", &at::rspmm_min_mul_forward_cpu); |
|
m.def("rspmm_min_mul_backward_cpu", &at::rspmm_min_mul_backward_cpu); |
|
m.def("rspmm_max_mul_forward_cpu", &at::rspmm_max_mul_forward_cpu); |
|
m.def("rspmm_max_mul_backward_cpu", &at::rspmm_max_mul_backward_cpu); |
|
m.def("rspmm_add_add_forward_cpu", &at::rspmm_add_add_forward_cpu); |
|
m.def("rspmm_add_add_backward_cpu", &at::rspmm_add_add_backward_cpu); |
|
m.def("rspmm_min_add_forward_cpu", &at::rspmm_min_add_forward_cpu); |
|
m.def("rspmm_min_add_backward_cpu", &at::rspmm_min_add_backward_cpu); |
|
m.def("rspmm_max_add_forward_cpu", &at::rspmm_max_add_forward_cpu); |
|
m.def("rspmm_max_add_backward_cpu", &at::rspmm_max_add_backward_cpu); |
|
#ifdef CUDA_OP |
|
m.def("rspmm_add_mul_forward_cuda", &at::rspmm_add_mul_forward_cuda); |
|
m.def("rspmm_add_mul_backward_cuda", &at::rspmm_add_mul_backward_cuda); |
|
m.def("rspmm_min_mul_forward_cuda", &at::rspmm_min_mul_forward_cuda); |
|
m.def("rspmm_min_mul_backward_cuda", &at::rspmm_min_mul_backward_cuda); |
|
m.def("rspmm_max_mul_forward_cuda", &at::rspmm_max_mul_forward_cuda); |
|
m.def("rspmm_max_mul_backward_cuda", &at::rspmm_max_mul_backward_cuda); |
|
m.def("rspmm_add_add_forward_cuda", &at::rspmm_add_add_forward_cuda); |
|
m.def("rspmm_add_add_backward_cuda", &at::rspmm_add_add_backward_cuda); |
|
m.def("rspmm_min_add_forward_cuda", &at::rspmm_min_add_forward_cuda); |
|
m.def("rspmm_min_add_backward_cuda", &at::rspmm_min_add_backward_cuda); |
|
m.def("rspmm_max_add_forward_cuda", &at::rspmm_max_add_forward_cuda); |
|
m.def("rspmm_max_add_backward_cuda", &at::rspmm_max_add_backward_cuda); |
|
#endif |
|
} |