File size: 7,178 Bytes
89650c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import math

import torch
from torch import distributed as dist
from torch.utils import data as torch_data
from torch_geometric.data import Data

from ultra import tasks, util


TRANSDUCTIVE = ("WordNet18RR", "RelLinkPredDataset", "CoDExSmall", "CoDExMedium", "CoDExLarge",
                "YAGO310", "NELL995", "ConceptNet100k", "DBpedia100k", "Hetionet", "AristoV4",
                "WDsinger", "NELL23k", "FB15k237_10", "FB15k237_20", "FB15k237_50")


def get_filtered_data(dataset, mode):
    train_data, valid_data, test_data = dataset[0], dataset[1], dataset[2]
    ds_name = dataset.__class__.__name__

    if ds_name in TRANSDUCTIVE:
        filtered_data = Data(edge_index=dataset._data.target_edge_index, edge_type=dataset._data.target_edge_type, num_nodes=dataset[0].num_nodes)
    else:
        if "ILPC" in ds_name or "Ingram" in ds_name:
            full_inference_edges = torch.cat([valid_data.edge_index, valid_data.target_edge_index, test_data.target_edge_index], dim=1)
            full_inference_etypes = torch.cat([valid_data.edge_type, valid_data.target_edge_type, test_data.target_edge_type])
            filtered_data = Data(edge_index=full_inference_edges, edge_type=full_inference_etypes, num_nodes=test_data.num_nodes)
        else:
            # test filtering graph: inference edges + test edges
            full_inference_edges = torch.cat([test_data.edge_index, test_data.target_edge_index], dim=1)
            full_inference_etypes = torch.cat([test_data.edge_type, test_data.target_edge_type])
            if mode == "test":
                filtered_data = Data(edge_index=full_inference_edges, edge_type=full_inference_etypes, num_nodes=test_data.num_nodes)
            else:
                # validation filtering graph: train edges + validation edges
                filtered_data = Data(
                    edge_index=torch.cat([train_data.edge_index, valid_data.target_edge_index], dim=1),
                    edge_type=torch.cat([train_data.edge_type, valid_data.target_edge_type])
                )

    return filtered_data


@torch.no_grad()
def test(model, mode, dataset,  batch_size=32, eval_metrics=["mrr", "hits@10"], gpus=None, return_metrics=False):
    logger = util.get_root_logger()
    test_data = dataset[1] if mode == "valid" else dataset[2]
    filtered_data = get_filtered_data(dataset, mode)

    device = util.get_devices(gpus)
    world_size = util.get_world_size()
    rank = util.get_rank()

    test_triplets = torch.cat([test_data.target_edge_index, test_data.target_edge_type.unsqueeze(0)]).t()
    sampler = torch_data.DistributedSampler(test_triplets, world_size, rank)
    test_loader = torch_data.DataLoader(test_triplets, batch_size, sampler=sampler)

    model.eval()
    rankings = []
    num_negatives = []
    tail_rankings, num_tail_negs = [], []  # for explicit tail-only evaluation needed for 5 datasets
    for batch in test_loader:
        t_batch, h_batch = tasks.all_negative(test_data, batch)
        t_pred = model(test_data, t_batch)
        h_pred = model(test_data, h_batch)

        if filtered_data is None:
            t_mask, h_mask = tasks.strict_negative_mask(test_data, batch)
        else:
            t_mask, h_mask = tasks.strict_negative_mask(filtered_data, batch)
        pos_h_index, pos_t_index, pos_r_index = batch.t()
        t_ranking = tasks.compute_ranking(t_pred, pos_t_index, t_mask)
        h_ranking = tasks.compute_ranking(h_pred, pos_h_index, h_mask)
        num_t_negative = t_mask.sum(dim=-1)
        num_h_negative = h_mask.sum(dim=-1)

        rankings += [t_ranking, h_ranking]
        num_negatives += [num_t_negative, num_h_negative]

        tail_rankings += [t_ranking]
        num_tail_negs += [num_t_negative]

    ranking = torch.cat(rankings)
    num_negative = torch.cat(num_negatives)
    all_size = torch.zeros(world_size, dtype=torch.long, device=device)
    all_size[rank] = len(ranking)

    # ugly repetitive code for tail-only ranks processing
    tail_ranking = torch.cat(tail_rankings)
    num_tail_neg = torch.cat(num_tail_negs)
    all_size_t = torch.zeros(world_size, dtype=torch.long, device=device)
    all_size_t[rank] = len(tail_ranking)
    if world_size > 1:
        dist.all_reduce(all_size, op=dist.ReduceOp.SUM)
        dist.all_reduce(all_size_t, op=dist.ReduceOp.SUM)

    # obtaining all ranks 
    cum_size = all_size.cumsum(0)
    all_ranking = torch.zeros(all_size.sum(), dtype=torch.long, device=device)
    all_ranking[cum_size[rank] - all_size[rank]: cum_size[rank]] = ranking
    all_num_negative = torch.zeros(all_size.sum(), dtype=torch.long, device=device)
    all_num_negative[cum_size[rank] - all_size[rank]: cum_size[rank]] = num_negative

    # the same for tails-only ranks
    cum_size_t = all_size_t.cumsum(0)
    all_ranking_t = torch.zeros(all_size_t.sum(), dtype=torch.long, device=device)
    all_ranking_t[cum_size_t[rank] - all_size_t[rank]: cum_size_t[rank]] = tail_ranking
    all_num_negative_t = torch.zeros(all_size_t.sum(), dtype=torch.long, device=device)
    all_num_negative_t[cum_size_t[rank] - all_size_t[rank]: cum_size_t[rank]] = num_tail_neg
    if world_size > 1:
        dist.all_reduce(all_ranking, op=dist.ReduceOp.SUM)
        dist.all_reduce(all_num_negative, op=dist.ReduceOp.SUM)
        dist.all_reduce(all_ranking_t, op=dist.ReduceOp.SUM)
        dist.all_reduce(all_num_negative_t, op=dist.ReduceOp.SUM)

    metrics = {}
    if rank == 0:
        for metric in eval_metrics:
            if "-tail" in metric:
                _metric_name, direction = metric.split("-")
                if direction != "tail":
                    raise ValueError("Only tail metric is supported in this mode")
                _ranking = all_ranking_t
                _num_neg = all_num_negative_t
            else:
                _ranking = all_ranking 
                _num_neg = all_num_negative 
                _metric_name = metric
            
            if _metric_name == "mr":
                score = _ranking.float().mean()
            elif _metric_name == "mrr":
                score = (1 / _ranking.float()).mean()
            elif _metric_name.startswith("hits@"):
                values = _metric_name[5:].split("_")
                threshold = int(values[0])
                if len(values) > 1:
                    num_sample = int(values[1])
                    # unbiased estimation
                    fp_rate = (_ranking - 1).float() / _num_neg
                    score = 0
                    for i in range(threshold):
                        # choose i false positive from num_sample - 1 negatives
                        num_comb = math.factorial(num_sample - 1) / \
                                   math.factorial(i) / math.factorial(num_sample - i - 1)
                        score += num_comb * (fp_rate ** i) * ((1 - fp_rate) ** (num_sample - i - 1))
                    score = score.mean()
                else:
                    score = (_ranking <= threshold).float().mean()
            logger.warning("%s: %g" % (metric, score))
            metrics[metric] = score
    mrr = (1 / all_ranking.float()).mean()

    return mrr if not return_metrics else metrics