File size: 14,098 Bytes
89650c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include <mutex>

#include <ATen/Parallel.h>

#include "operator.cuh"
#include "rspmm.h"

namespace at {

// In PyTorch 1.4.0, parallel_for depends on some functions from at::internal in ATen/Parallel.h
// which are not explicitly included
// This is fixed in some new PyTorch release
using namespace at::internal;

void rspmm_forward_check(CheckedFrom c, const TensorArg &edge_index_arg, const TensorArg &edge_type_arg,
                         const TensorArg &edge_weight_arg, const TensorArg &relation_arg, const TensorArg &input_arg) {
    checkDim(c, edge_index_arg, 2);
    checkDim(c, edge_type_arg, 1);
    checkDim(c, edge_weight_arg, 1);
    checkDim(c, relation_arg, 2);
    checkDim(c, input_arg, 2);
    checkSameType(c, edge_index_arg, edge_type_arg);
    checkAllSameType(c, {edge_weight_arg, relation_arg, input_arg});
    checkSize(c, edge_index_arg, 0, 2);
    checkSize(c, edge_type_arg, {edge_index_arg->size(1)});
    checkSize(c, edge_weight_arg, {edge_index_arg->size(1)});
    checkSize(c, relation_arg, 1, input_arg->size(1));
}

void rspmm_backward_check(CheckedFrom c, const TensorArg &edge_index_arg, const TensorArg &edge_type_arg,
                          const TensorArg &edge_weight_arg, const TensorArg &relation_arg, const TensorArg &input_arg,
                          const TensorArg &output_arg, const TensorArg &output_grad_arg) {
    rspmm_forward_check(c, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg);
    checkDim(c, output_arg, 2);
    checkSameSize(c, output_arg, output_grad_arg);
    checkAllSameType(c, {input_arg, output_arg, output_grad_arg});
    checkSize(c, output_arg, 1, input_arg->size(1));
}

Tensor ind2ptr(const Tensor &index, int size) {
    // scatter_add is super slow for int64, due to non-hardware atomic operations
    // use int32 instead
    Tensor num_per_index = at::zeros({size}, index.options().dtype(at::ScalarType::Int));
    num_per_index.scatter_add_(0, index, at::ones(index.sizes(), num_per_index.options()));
    num_per_index = num_per_index.toType(at::ScalarType::Long);
    Tensor pointer = num_per_index.cumsum(0) - num_per_index;
    return pointer;
}

template <class scalar_t, class NaryOp, class BinaryOp>
void rspmm_forward_out_cpu(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
                           const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
                           scalar_t *output,
                           int64_t num_row, int64_t nnz, int64_t dim) {
    parallel_for(0, num_row, 0, [&](int64_t row_start, int64_t row_end) {
        for (int64_t row = row_start; row < row_end; row++) {
            for (int64_t d = 0; d < dim; d++)
                output[row * dim + d] = NaryOp::zero;

            int64_t ptr_start = row_ptr[row];
            int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
            for (int64_t ptr = ptr_start; ptr < ptr_end; ptr++) {
                int64_t col = col_ind[ptr];
                int64_t layer = layer_ind[ptr];
                scalar_t w = weight[ptr];
                for (int64_t d = 0; d < dim; d++) {
                    scalar_t x = BinaryOp::forward(relation[layer * dim + d], input[col * dim + d]);
                    scalar_t y = w * x;
                    scalar_t &out = output[row * dim + d];
                    out = NaryOp::forward(out, y);
                }
            }
        }
    });
}

template <class scalar_t, class NaryOp, class BinaryOp>
void rspmm_backward_out_cpu(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind,
                            const scalar_t *weight, const scalar_t *relation, const scalar_t *input,
                            const scalar_t *output, const scalar_t *output_grad,
                            scalar_t *weight_grad, scalar_t *relation_grad, scalar_t *input_grad,
                            int64_t num_row, int64_t nnz, int64_t dim,
                            std::vector<std::mutex> &relation_mutex, std::vector<std::mutex> &input_mutex) {
    parallel_for(0, num_row, 0, [&](int64_t row_start, int64_t row_end) {
        for (int64_t row = row_start; row < row_end; row++) {
            int64_t ptr_start = row_ptr[row];
            int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz;
            for (int64_t ptr = ptr_start; ptr < ptr_end; ptr++) {
                int64_t col = col_ind[ptr];
                int64_t layer = layer_ind[ptr];
                scalar_t w = weight[ptr];
                scalar_t w_grad = 0;
                for (int64_t d = 0; d < dim; d++) {
                    scalar_t rel = relation[layer * dim + d];
                    scalar_t in = input[col * dim + d];
                    scalar_t out = output[row * dim + d];
                    scalar_t out_grad = output_grad[row * dim + d];
                    scalar_t x = BinaryOp::forward(rel, in);
                    scalar_t y = w * x;
                    scalar_t dx_drel = BinaryOp::backward_lhs(rel, in);
                    scalar_t dx_din = BinaryOp::backward_rhs(rel, in);
                    scalar_t dout_dy = NaryOp::backward(out, y);
                    scalar_t dy_dw = x;
                    scalar_t dy_dx = w;
                    w_grad += out_grad * dout_dy * dy_dw;
                    {
                        std::lock_guard<std::mutex> lock(relation_mutex[layer * dim + d]);
                        relation_grad[layer * dim + d] += out_grad * dout_dy * dy_dx * dx_drel;
                    }
                    {
                        std::lock_guard<std::mutex> lock(input_mutex[col * dim + d]);
                        input_grad[col * dim + d] += out_grad * dout_dy * dy_dx * dx_din;
                    }
                }
                weight_grad[ptr] = w_grad;
            }
        }
    });
}

template <template<class> class NaryOp, template<class> class BinaryOp>
Tensor rspmm_forward_cpu(const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
                         const Tensor &relation_, const Tensor &input_) {
    constexpr const char *fn_name = "rspmm_forward_cpu";
    TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
              edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
              input_arg(input_, "input", 5);

    rspmm_forward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg);
    checkDeviceType(fn_name, {edge_index_, edge_type_, edge_weight_, relation_, input_}, kCPU);

    const Tensor edge_index = edge_index_.contiguous();
    const Tensor edge_type = edge_type_.contiguous();
    const Tensor edge_weight = edge_weight_.contiguous();
    const Tensor relation = relation_.contiguous();
    const Tensor input = input_.contiguous();

    int64_t nnz = edge_index.size(0);
    int64_t num_row = input.size(0);
    int64_t dim = input.size(1);
    Tensor output = at::empty({num_row, dim}, input.options());

    Tensor row_ind = edge_index.select(0, 0);
    Tensor row_ptr = ind2ptr(row_ind, num_row);
    Tensor col_ind = edge_index.select(0, 1);
    Tensor layer_ind = edge_type;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_forward_cpu", [&] {
        rspmm_forward_out_cpu<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>(
            row_ptr.data_ptr<int64_t>(),
            col_ind.data_ptr<int64_t>(),
            layer_ind.data_ptr<int64_t>(),
            edge_weight.data_ptr<scalar_t>(),
            relation.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            num_row, nnz, dim
        );
    });

    return output;
}

template <template<class> class NaryOp, template<class> class BinaryOp>
std::tuple<Tensor, Tensor, Tensor> rspmm_backward_cpu(
        const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_,
        const Tensor &relation_, const Tensor &input_, const Tensor &output_, const Tensor &output_grad_) {
    constexpr const char *fn_name = "rspmm_backward_cpu";
    TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2),
              edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4),
              input_arg(input_, "input", 5), output_arg(output_, "output", 6),
              output_grad_arg(output_grad_, "output_grad", 7);

    rspmm_backward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg,
                         output_arg, output_grad_arg);
    checkDeviceType(fn_name, {edge_index_, edge_type_, edge_weight_, relation_, input_, output_, output_grad_}, kCPU);

    const Tensor edge_index = edge_index_.contiguous();
    const Tensor edge_type = edge_type_.contiguous();
    const Tensor edge_weight = edge_weight_.contiguous();
    const Tensor relation = relation_.contiguous();
    const Tensor input = input_.contiguous();
    const Tensor output = output_.contiguous();
    const Tensor output_grad = output_grad_.contiguous();

    int64_t nnz = edge_index.size(0);
    int64_t num_row = input.size(0);
    int64_t dim = input.size(1);
    Tensor weight_grad = at::zeros_like(edge_weight);
    Tensor relation_grad = at::zeros_like(relation);
    Tensor input_grad = at::zeros_like(input);

    Tensor row_ind = edge_index.select(0, 0);
    Tensor row_ptr = ind2ptr(row_ind, num_row);
    Tensor col_ind = edge_index.select(0, 1);
    Tensor layer_ind = edge_type;
    std::vector<std::mutex> relation_mutex(relation.numel());
    std::vector<std::mutex> input_mutex(input.numel());

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cpu", [&] {
        rspmm_backward_out_cpu<scalar_t, NaryOp<scalar_t>, BinaryOp<scalar_t>>(
            row_ptr.data_ptr<int64_t>(),
            col_ind.data_ptr<int64_t>(),
            layer_ind.data_ptr<int64_t>(),
            edge_weight.data_ptr<scalar_t>(),
            relation.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            output_grad.data_ptr<scalar_t>(),
            weight_grad.data_ptr<scalar_t>(),
            relation_grad.data_ptr<scalar_t>(),
            input_grad.data_ptr<scalar_t>(),
            num_row, nnz, dim,
            relation_mutex, input_mutex
        );
    });

    return std::make_tuple(weight_grad, relation_grad, input_grad);
}

#define DECLARE_FORWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
    Tensor rspmm_##ADD##_##MUL##_forward_cpu(                                                            \
            const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight,                \
            const Tensor &relation, const Tensor &input) {                                               \
        return rspmm_forward_cpu<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input); \
    }

#define DECLARE_BACKWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \
    std::tuple<Tensor, Tensor, Tensor> rspmm_##ADD##_##MUL##_backward_cpu(                                  \
            const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight,                   \
            const Tensor &relation, const Tensor &input, const Tensor &output, const Tensor &output_grad) { \
        return rspmm_backward_cpu<NARYOP, BINARYOP>(edge_index, edge_type, edge_weight, relation, input,    \
                                                     output, output_grad);                                  \
    }

DECLARE_FORWARD_IMPL(add, mul, NaryAdd, BinaryMul)
DECLARE_BACKWARD_IMPL(add, mul, NaryAdd, BinaryMul)

DECLARE_FORWARD_IMPL(min, mul, NaryMin, BinaryMul)
DECLARE_BACKWARD_IMPL(min, mul, NaryMin, BinaryMul)

DECLARE_FORWARD_IMPL(max, mul, NaryMax, BinaryMul)
DECLARE_BACKWARD_IMPL(max, mul, NaryMax, BinaryMul)

DECLARE_FORWARD_IMPL(add, add, NaryAdd, BinaryAdd)
DECLARE_BACKWARD_IMPL(add, add, NaryAdd, BinaryAdd)

DECLARE_FORWARD_IMPL(min, add, NaryMin, BinaryAdd)
DECLARE_BACKWARD_IMPL(min, add, NaryMin, BinaryAdd)

DECLARE_FORWARD_IMPL(max, add, NaryMax, BinaryAdd)
DECLARE_BACKWARD_IMPL(max, add, NaryMax, BinaryAdd)

} // namespace at

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("rspmm_add_mul_forward_cpu", &at::rspmm_add_mul_forward_cpu);
    m.def("rspmm_add_mul_backward_cpu", &at::rspmm_add_mul_backward_cpu);
    m.def("rspmm_min_mul_forward_cpu", &at::rspmm_min_mul_forward_cpu);
    m.def("rspmm_min_mul_backward_cpu", &at::rspmm_min_mul_backward_cpu);
    m.def("rspmm_max_mul_forward_cpu", &at::rspmm_max_mul_forward_cpu);
    m.def("rspmm_max_mul_backward_cpu", &at::rspmm_max_mul_backward_cpu);
    m.def("rspmm_add_add_forward_cpu", &at::rspmm_add_add_forward_cpu);
    m.def("rspmm_add_add_backward_cpu", &at::rspmm_add_add_backward_cpu);
    m.def("rspmm_min_add_forward_cpu", &at::rspmm_min_add_forward_cpu);
    m.def("rspmm_min_add_backward_cpu", &at::rspmm_min_add_backward_cpu);
    m.def("rspmm_max_add_forward_cpu", &at::rspmm_max_add_forward_cpu);
    m.def("rspmm_max_add_backward_cpu", &at::rspmm_max_add_backward_cpu);
#ifdef CUDA_OP
    m.def("rspmm_add_mul_forward_cuda", &at::rspmm_add_mul_forward_cuda);
    m.def("rspmm_add_mul_backward_cuda", &at::rspmm_add_mul_backward_cuda);
    m.def("rspmm_min_mul_forward_cuda", &at::rspmm_min_mul_forward_cuda);
    m.def("rspmm_min_mul_backward_cuda", &at::rspmm_min_mul_backward_cuda);
    m.def("rspmm_max_mul_forward_cuda", &at::rspmm_max_mul_forward_cuda);
    m.def("rspmm_max_mul_backward_cuda", &at::rspmm_max_mul_backward_cuda);
    m.def("rspmm_add_add_forward_cuda", &at::rspmm_add_add_forward_cuda);
    m.def("rspmm_add_add_backward_cuda", &at::rspmm_add_add_backward_cuda);
    m.def("rspmm_min_add_forward_cuda", &at::rspmm_min_add_forward_cuda);
    m.def("rspmm_min_add_backward_cuda", &at::rspmm_min_add_backward_cuda);
    m.def("rspmm_max_add_forward_cuda", &at::rspmm_max_add_forward_cuda);
    m.def("rspmm_max_add_backward_cuda", &at::rspmm_max_add_backward_cuda);
#endif
}