File size: 1,373 Bytes
cb26734 fb8b3dd cb26734 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
tags: ["autonlp"]
language: it
widget:
- text: "I love AutoNLP 🤗"
datasets:
- mgrella/autonlp-data-bank-transaction-classification
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 5521155
## Validation Metrics
- Loss: 1.3173143863677979
- Accuracy: 0.8220706757594545
- Macro F1: 0.5713688384455807
- Micro F1: 0.8220706757594544
- Weighted F1: 0.8217158913702755
- Macro Precision: 0.6064387992817253
- Micro Precision: 0.8220706757594545
- Weighted Precision: 0.8491515834140735
- Macro Recall: 0.5873349311175117
- Micro Recall: 0.8220706757594545
- Weighted Recall: 0.8220706757594545
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mgrella/autonlp-bank-transaction-classification-5521155
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("mgrella/autonlp-bank-transaction-classification-5521155", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("mgrella/autonlp-bank-transaction-classification-5521155", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |