{ "_name_or_path": "/kaggle/working/tmp/models/intfloat-e5-large-v2-quant", "architectures": [ "BertModel" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "position_embedding_type": "absolute", "quantization_config": { "_load_in_4bit": true, "_load_in_8bit": false, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_quant_storage": "uint8", "bnb_4bit_quant_type": "nf4", "bnb_4bit_use_double_quant": true, "llm_int8_enable_fp32_cpu_offload": false, "llm_int8_has_fp16_weight": false, "llm_int8_skip_modules": null, "llm_int8_threshold": 6.0, "load_in_4bit": true, "load_in_8bit": false, "quant_method": "bitsandbytes" }, "torch_dtype": "float16", "transformers_version": "4.41.2", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 }