model: base_learning_rate: 5e-5 target: ldm.models.diffusion.morphable_diffusion.SyncMultiviewDiffusion params: view_num: 16 image_size: 256 cfg_scale: 2.0 output_num: 8 batch_view_num: 4 finetune_unet: True drop_conditions: false projection: 'perspective' use_spatial_volume: False clip_image_encoder_path: ./ckpt/ViT-L-14.pt target_elevation: 0 scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 100 ] cycle_lengths: [ 100000 ] f_start: [ 0.02 ] f_max: [ 1.0 ] f_min: [ 1.0 ] unet_config: target: ldm.models.diffusion.attention.DepthWiseAttention params: volume_dims: [64, 128, 256, 512] image_size: 32 in_channels: 8 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False data: target: ldm.data.facescape.FaceScapeDataset params: data_dir: /cluster/scratch/xiychen/data/facescape_color_calibrated mesh_topology: 'flame' shuffled_expression: True batch_size: 70 # batch size for a single gpu num_workers: 1 lightning: modelcheckpoint: params: every_n_train_steps: 2000 callbacks: {} trainer: benchmark: True max_steps: 6000 val_check_interval: 250 # we will run validation every 1k steps, the validation will output images to //val num_sanity_val_steps: 0 precision: 32 check_val_every_n_epoch: null accumulate_grad_batches: 1