tumproject / handler.py
mibressler's picture
Upload folder using huggingface_hub
8b707a5
raw
history blame
1.17 kB
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
from peft import PeftModel
import json
import os
class EndpointHandler():
def __init__(self, path=""):
base_model_path = json.load(open(os.path.join(path, "training_params.json")))["model"]
model = AutoModelForCausalLM.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
model = PeftModel.from_pretrained(model, path)
model = model.merge_and_unload()
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
if parameters is not None:
prediction = self.pipeline(inputs, **parameters)
else:
prediction = self.pipeline(inputs)
return prediction