michael-kingston
commited on
Commit
•
d21dea3
1
Parent(s):
c8d7d33
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-1.zip +3 -0
- ppo-LunarLander-v2-1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-1/data +99 -0
- ppo-LunarLander-v2-1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-1/policy.pth +3 -0
- ppo-LunarLander-v2-1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -162.97 +/- 58.64
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c37edc3ab00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c37edc3ab90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c37edc3ac20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c37edc3acb0>", "_build": "<function ActorCriticPolicy._build at 0x7c37edc3ad40>", "forward": "<function ActorCriticPolicy.forward at 0x7c37edc3add0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c37edc3ae60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c37edc3aef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c37edc3af80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c37edc3b010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c37edc3b0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c37edc3b130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c37edc3d0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698203366105818335, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDngT0d9bs/nZdTPhQgkL4OqH69XMUlvgAAAAAAAAAA7Sjuvut0yT66TZ2/b12uv1lhXz+YL7o+AAAAAAAAAAAAXCc8uhPDPzoClz2pi0c+qhbNPTGDOT4AAAAAAAAAAM057jyYULs/M7+wPkF3VT4J3I47RPKTPQAAAAAAAAAABpCaPvx8vD4lUjA/efeTvx6+C77rbKu8AAAAAAAAAACAXnc9akuiPwYYoz6tTLq+i8QEviundr0AAAAAAAAAAGYGf7puW68/Wqj6u9ax9r66kDW7nUuEvQAAAAAAAAAAmjFKO2QwtT9Z/Z8+5zlSPgDYabvO9ZC9AAAAAAAAAABNmla9oKmuP56sj752a1C+ynXlPF5xwbsAAAAAAAAAAGYCuruop7Q/uSikvUlPub2i2S88QztuPQAAAAAAAAAAAoYHP+nvBT/lNVo/5q2Tvzu8F74+z/S9AAAAAAAAAABgd/W+FTPTvS5zKb9tQ6O/FluqvoUYdr4AAIA/AAAAAHaNVL6SVKY/uww8v0Ozhb6iZY49Feb9OwAAAAAAAAAAWpyBvQIrrD9+zDa/Qm6ovk82hj277eM9AAAAAAAAAABmJpu+fnidPpySJL9Sha+/TYMUP+p0xj4AAAAAAAAAAGaG2LyHOrg/3esqv5uFlT4xdBM9ba1EPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHNviiyprDaMAWyUS2OMAXSUR0AzK8VpKzzFdX2UKGgGR8BoQC02LpA2aAdLfWgIR0AzOeLNwBHTdX2UKGgGR8BY8a2a2F37aAdLPmgIR0AzOqj8DSw4dX2UKGgGR8BbSuDrZ8KHaAdLQWgIR0AzRhQ3xWkrdX2UKGgGR8BdoldHDrJKaAdLcmgIR0AzS71qWToudX2UKGgGR8BWI433pOeraAdLPmgIR0AzTnXd0q6OdX2UKGgGR8B5OFX6qKgqaAdLW2gIR0AzWVrylN1ydX2UKGgGR8BHKA6Mir1eaAdLR2gIR0AzYemvW6K+dX2UKGgGR8BdYFiay8jBaAdLdmgIR0AzZdjoZAIIdX2UKGgGR8BbH/ViF0xNaAdLVGgIR0AzbUedTYNBdX2UKGgGR8BW3sRg7YChaAdLXmgIR0Azd9BKL877dX2UKGgGR8B40Du0CzTnaAdLWmgIR0AzgO09hZyNdX2UKGgGR8BVqBxkupS8aAdLWmgIR0Azh+Q2dd3TdX2UKGgGR8BdzTjm0VrRaAdLV2gIR0AzhbcoH9m6dX2UKGgGR8BsbncvduYQaAdLTGgIR0AziphnanJldX2UKGgGR8BvB8q2BreqaAdLamgIR0AzmesPrfLtdX2UKGgGR8B0KudkJ8fFaAdLS2gIR0AzoTER8MNMdX2UKGgGR8BgiuAAhje9aAdLVGgIR0AzokPMB6rvdX2UKGgGR8BhPXi3ocJdaAdLeWgIR0AzpY/Vy3kQdX2UKGgGR8BnhJwn6VMVaAdLQ2gIR0AzrJ4jbBXTdX2UKGgGR8BdJUsSTQmeaAdLdGgIR0AztuSwGGEgdX2UKGgGR8BzeLaQFLWaaAdLYWgIR0Aztk5ZKWcCdX2UKGgGR8B/pExk/bCaaAdLjWgIR0AzuABT4tYkdX2UKGgGR8BhJxXfZVXFaAdLYGgIR0Azwndfsu3+dX2UKGgGR8Bg+FtALRa5aAdLPWgIR0AzxFn7HhjwdX2UKGgGR8B3DPmbLEDRaAdLWmgIR0AzzxmCiAUddX2UKGgGR8BdCGTX8O0+aAdLRWgIR0Az4VrylN1ydX2UKGgGR8B8uF0JWvKVaAdLd2gIR0Az5XDWK/EgdX2UKGgGR8BjEki6g/TtaAdLaWgIR0Az6UtqYZ2qdX2UKGgGR8Az6ji4rjHXaAdLWmgIR0Az5oEjgQ6IdX2UKGgGR8BT7Un5SFXaaAdLR2gIR0Az6sNUfgaWdX2UKGgGR8BXc7iyY5T7aAdLTmgIR0Az9OSGJvYOdX2UKGgGR8B0RyQYDTz/aAdLRGgIR0Az+6RyOq//dX2UKGgGR8BwSOn62v0RaAdLcGgIR0A0ANdqtYCAdX2UKGgGR8BhjOgUUO/daAdLTGgIR0A0A3kPtlZpdX2UKGgGR8Byk8nuy/sWaAdLUmgIR0A0CuoxYaHcdX2UKGgGR8BRkh3qzJIUaAdLaGgIR0A0DOCoS+QEdX2UKGgGR8BwOBOymhugaAdLXWgIR0A0C4nndO6/dX2UKGgGR8Baw4/zJ6ppaAdLhmgIR0A0FTh5xBE8dX2UKGgGR8BioYMnZ00WaAdLZ2gIR0A0Lg8r7O3VdX2UKGgGR8Bte9+7UXpGaAdLZGgIR0A0NsZYPoV3dX2UKGgGR8Bjnkaya/h3aAdLRWgIR0A0Pddmg8KYdX2UKGgGR8BqWqz9jwx4aAdLgWgIR0A0SGmk30f6dX2UKGgGR8BvtkwztTkyaAdLYWgIR0A0Sx/d69kCdX2UKGgGR8ByZLEJjUd8aAdLX2gIR0A0TlsP8Q7LdX2UKGgGR8B5XUHUtqYaaAdLUmgIR0A0Uq1gH/tIdX2UKGgGR8By/rPqs2ehaAdLRmgIR0A0VYsNDtw8dX2UKGgGR8BQyn3cpLElaAdLbWgIR0A0VAtFrl/6dX2UKGgGR8BLGx3V09yMaAdLbmgIR0A0XIMBp5/tdX2UKGgGR8Bw4sH9m6GyaAdLQmgIR0A0XDZlFtsOdX2UKGgGR8B2bfZK3/gjaAdLW2gIR0A0Yyo4uK4ydX2UKGgGR8BhxHxri2lVaAdLUWgIR0A0YpTuOS4fdX2UKGgGR8BzP0+yJKraaAdLZGgIR0A0ahgE2YOUdX2UKGgGR8Bdwl+mWMS9aAdLfWgIR0A0aS2Yv38GdX2UKGgGR8BNZJO32EkCaAdLbGgIR0A0fDye7L+xdX2UKGgGR8Bu6wjbBXS0aAdLYGgIR0A0k7Rv3rUtdX2UKGgGR8BwyRZid8RdaAdLRmgIR0A0sNbkfcN6dX2UKGgGR8BT88+JP69CaAdLOmgIR0A0uNZNfw7UdX2UKGgGR8Bb3pIg/1QJaAdLSGgIR0A0zqxC6YmcdX2UKGgGR8BykN0o0ALiaAdLU2gIR0A01dmxt52RdX2UKGgGR8BW37NfPX05aAdLb2gIR0A04Ah0Qsf8dX2UKGgGR8BqzAMc6vJSaAdLVWgIR0A04AEMb3oLdX2UKGgGR8B0XOLHdXT3aAdLY2gIR0A05Qe3hGYsdX2UKGgGR8BzdpH6MzdlaAdLUGgIR0A07CyyD7IldX2UKGgGR8Bs86peeFtbaAdLWWgIR0A07q1PWQOndX2UKGgGR8BgaEaESM99aAdLTWgIR0A07twJgLJCdX2UKGgGR8BhiShzvJA/aAdLfmgIR0A09y4Wk8A8dX2UKGgGR8BwDDixVyWBaAdLX2gIR0A1A9eyAxzrdX2UKGgGR8BwGptP557gaAdLZ2gIR0A1BNQ0oBq9dX2UKGgGR8Bccb/S6UaAaAdLV2gIR0A1DnOSntOVdX2UKGgGR8BxZbDFZPl/aAdLgWgIR0A1ENQj2SMcdX2UKGgGR8BQiifthNM5aAdLUGgIR0A1HT+NtIkJdX2UKGgGR8BYFNFjNIK/aAdLP2gIR0A1I2l2vB8AdX2UKGgGR8Ba4kFnqVyFaAdLU2gIR0A1LY7q6e5GdX2UKGgGR8BfIwssg+yJaAdLPmgIR0A1MOs1baAXdX2UKGgGR8BeiKn3ta6jaAdLQGgIR0A1MLZi/fwadX2UKGgGR8BdRxAOavzOaAdLRGgIR0A1N1WKdhAodX2UKGgGR8BkeLSkTHsDaAdLaGgIR0A1O8VHnU2DdX2UKGgGR8Bd6Tjin5zpaAdLbGgIR0A1Px0+1SfldX2UKGgGR8BmEWZTho/SaAdLXWgIR0A1Q5zHS4OMdX2UKGgGR8BaLixVyWAxaAdLZmgIR0A1QwcYIjW1dX2UKGgGR8BdPSAMDwH8aAdLYWgIR0A1S2NvOyE+dX2UKGgGR8BXfnxOLzf8aAdLSGgIR0A1Tnk1dgOSdX2UKGgGR8BLUhgE2YOUaAdLR2gIR0A1V2B8QZn+dX2UKGgGR8BhHPT1CgK4aAdLR2gIR0A1WXwb2lEadX2UKGgGR8Bd9Un9ehPCaAdLVWgIR0A1W/tY0VJudX2UKGgGR8BnxGuDBdleaAdLbWgIR0A1jDRc/t6YdX2UKGgGR8Be5B7NSqEOaAdLV2gIR0A1qncclw98dX2UKGgGR8BiBuxIJ7b+aAdLVGgIR0A1raHsTnJUdX2UKGgGR8BVZGlEZzgdaAdLQ2gIR0A1u1R+BpYcdX2UKGgGR8Bh3H+uNgjRaAdLRWgIR0A1vTlkpZwGdX2UKGgGR8BcJ5cgQpWnaAdLY2gIR0A1yayKNyYHdX2UKGgGR8Bh8KhcqvvCaAdLS2gIR0A1zIwudwvQdX2UKGgGR8BgMaKekHlfaAdLamgIR0A1zsQumJm/dX2UKGgGR8BgbdV3ljmTaAdLZmgIR0A11HLA57w8dX2UKGgGR8Btrr6WPcSHaAdLcGgIR0A12I55qubJdX2UKGgGR8Brbb1kDp1SaAdLUWgIR0A11ub7TDwZdX2UKGgGR8ByEfPRiPQwaAdLaWgIR0A13FUQ04zadX2UKGgGR8Bek7H2h7E6aAdLSmgIR0A12byH2ys0dX2UKGgGR8BzZmom5UcXaAdLaWgIR0A135nDiwSrdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55d991f85fa5055916872f74e56388f32b60f36a3feaa4bd9eb23bcac01971c0
|
3 |
+
size 147900
|
ppo-LunarLander-v2-1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c37edc3ab00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c37edc3ab90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c37edc3ac20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c37edc3acb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c37edc3ad40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c37edc3add0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c37edc3ae60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c37edc3aef0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c37edc3af80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c37edc3b010>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c37edc3b0a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c37edc3b130>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c37edc3d0c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1698203366105818335,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDngT0d9bs/nZdTPhQgkL4OqH69XMUlvgAAAAAAAAAA7Sjuvut0yT66TZ2/b12uv1lhXz+YL7o+AAAAAAAAAAAAXCc8uhPDPzoClz2pi0c+qhbNPTGDOT4AAAAAAAAAAM057jyYULs/M7+wPkF3VT4J3I47RPKTPQAAAAAAAAAABpCaPvx8vD4lUjA/efeTvx6+C77rbKu8AAAAAAAAAACAXnc9akuiPwYYoz6tTLq+i8QEviundr0AAAAAAAAAAGYGf7puW68/Wqj6u9ax9r66kDW7nUuEvQAAAAAAAAAAmjFKO2QwtT9Z/Z8+5zlSPgDYabvO9ZC9AAAAAAAAAABNmla9oKmuP56sj752a1C+ynXlPF5xwbsAAAAAAAAAAGYCuruop7Q/uSikvUlPub2i2S88QztuPQAAAAAAAAAAAoYHP+nvBT/lNVo/5q2Tvzu8F74+z/S9AAAAAAAAAABgd/W+FTPTvS5zKb9tQ6O/FluqvoUYdr4AAIA/AAAAAHaNVL6SVKY/uww8v0Ozhb6iZY49Feb9OwAAAAAAAAAAWpyBvQIrrD9+zDa/Qm6ovk82hj277eM9AAAAAAAAAABmJpu+fnidPpySJL9Sha+/TYMUP+p0xj4AAAAAAAAAAGaG2LyHOrg/3esqv5uFlT4xdBM9ba1EPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -1637.4,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHNviiyprDaMAWyUS2OMAXSUR0AzK8VpKzzFdX2UKGgGR8BoQC02LpA2aAdLfWgIR0AzOeLNwBHTdX2UKGgGR8BY8a2a2F37aAdLPmgIR0AzOqj8DSw4dX2UKGgGR8BbSuDrZ8KHaAdLQWgIR0AzRhQ3xWkrdX2UKGgGR8BdoldHDrJKaAdLcmgIR0AzS71qWToudX2UKGgGR8BWI433pOeraAdLPmgIR0AzTnXd0q6OdX2UKGgGR8B5OFX6qKgqaAdLW2gIR0AzWVrylN1ydX2UKGgGR8BHKA6Mir1eaAdLR2gIR0AzYemvW6K+dX2UKGgGR8BdYFiay8jBaAdLdmgIR0AzZdjoZAIIdX2UKGgGR8BbH/ViF0xNaAdLVGgIR0AzbUedTYNBdX2UKGgGR8BW3sRg7YChaAdLXmgIR0Azd9BKL877dX2UKGgGR8B40Du0CzTnaAdLWmgIR0AzgO09hZyNdX2UKGgGR8BVqBxkupS8aAdLWmgIR0Azh+Q2dd3TdX2UKGgGR8BdzTjm0VrRaAdLV2gIR0AzhbcoH9m6dX2UKGgGR8BsbncvduYQaAdLTGgIR0AziphnanJldX2UKGgGR8BvB8q2BreqaAdLamgIR0AzmesPrfLtdX2UKGgGR8B0KudkJ8fFaAdLS2gIR0AzoTER8MNMdX2UKGgGR8BgiuAAhje9aAdLVGgIR0AzokPMB6rvdX2UKGgGR8BhPXi3ocJdaAdLeWgIR0AzpY/Vy3kQdX2UKGgGR8BnhJwn6VMVaAdLQ2gIR0AzrJ4jbBXTdX2UKGgGR8BdJUsSTQmeaAdLdGgIR0AztuSwGGEgdX2UKGgGR8BzeLaQFLWaaAdLYWgIR0Aztk5ZKWcCdX2UKGgGR8B/pExk/bCaaAdLjWgIR0AzuABT4tYkdX2UKGgGR8BhJxXfZVXFaAdLYGgIR0Azwndfsu3+dX2UKGgGR8Bg+FtALRa5aAdLPWgIR0AzxFn7HhjwdX2UKGgGR8B3DPmbLEDRaAdLWmgIR0AzzxmCiAUddX2UKGgGR8BdCGTX8O0+aAdLRWgIR0Az4VrylN1ydX2UKGgGR8B8uF0JWvKVaAdLd2gIR0Az5XDWK/EgdX2UKGgGR8BjEki6g/TtaAdLaWgIR0Az6UtqYZ2qdX2UKGgGR8Az6ji4rjHXaAdLWmgIR0Az5oEjgQ6IdX2UKGgGR8BT7Un5SFXaaAdLR2gIR0Az6sNUfgaWdX2UKGgGR8BXc7iyY5T7aAdLTmgIR0Az9OSGJvYOdX2UKGgGR8B0RyQYDTz/aAdLRGgIR0Az+6RyOq//dX2UKGgGR8BwSOn62v0RaAdLcGgIR0A0ANdqtYCAdX2UKGgGR8BhjOgUUO/daAdLTGgIR0A0A3kPtlZpdX2UKGgGR8Byk8nuy/sWaAdLUmgIR0A0CuoxYaHcdX2UKGgGR8BRkh3qzJIUaAdLaGgIR0A0DOCoS+QEdX2UKGgGR8BwOBOymhugaAdLXWgIR0A0C4nndO6/dX2UKGgGR8Baw4/zJ6ppaAdLhmgIR0A0FTh5xBE8dX2UKGgGR8BioYMnZ00WaAdLZ2gIR0A0Lg8r7O3VdX2UKGgGR8Bte9+7UXpGaAdLZGgIR0A0NsZYPoV3dX2UKGgGR8Bjnkaya/h3aAdLRWgIR0A0Pddmg8KYdX2UKGgGR8BqWqz9jwx4aAdLgWgIR0A0SGmk30f6dX2UKGgGR8BvtkwztTkyaAdLYWgIR0A0Sx/d69kCdX2UKGgGR8ByZLEJjUd8aAdLX2gIR0A0TlsP8Q7LdX2UKGgGR8B5XUHUtqYaaAdLUmgIR0A0Uq1gH/tIdX2UKGgGR8By/rPqs2ehaAdLRmgIR0A0VYsNDtw8dX2UKGgGR8BQyn3cpLElaAdLbWgIR0A0VAtFrl/6dX2UKGgGR8BLGx3V09yMaAdLbmgIR0A0XIMBp5/tdX2UKGgGR8Bw4sH9m6GyaAdLQmgIR0A0XDZlFtsOdX2UKGgGR8B2bfZK3/gjaAdLW2gIR0A0Yyo4uK4ydX2UKGgGR8BhxHxri2lVaAdLUWgIR0A0YpTuOS4fdX2UKGgGR8BzP0+yJKraaAdLZGgIR0A0ahgE2YOUdX2UKGgGR8Bdwl+mWMS9aAdLfWgIR0A0aS2Yv38GdX2UKGgGR8BNZJO32EkCaAdLbGgIR0A0fDye7L+xdX2UKGgGR8Bu6wjbBXS0aAdLYGgIR0A0k7Rv3rUtdX2UKGgGR8BwyRZid8RdaAdLRmgIR0A0sNbkfcN6dX2UKGgGR8BT88+JP69CaAdLOmgIR0A0uNZNfw7UdX2UKGgGR8Bb3pIg/1QJaAdLSGgIR0A0zqxC6YmcdX2UKGgGR8BykN0o0ALiaAdLU2gIR0A01dmxt52RdX2UKGgGR8BW37NfPX05aAdLb2gIR0A04Ah0Qsf8dX2UKGgGR8BqzAMc6vJSaAdLVWgIR0A04AEMb3oLdX2UKGgGR8B0XOLHdXT3aAdLY2gIR0A05Qe3hGYsdX2UKGgGR8BzdpH6MzdlaAdLUGgIR0A07CyyD7IldX2UKGgGR8Bs86peeFtbaAdLWWgIR0A07q1PWQOndX2UKGgGR8BgaEaESM99aAdLTWgIR0A07twJgLJCdX2UKGgGR8BhiShzvJA/aAdLfmgIR0A09y4Wk8A8dX2UKGgGR8BwDDixVyWBaAdLX2gIR0A1A9eyAxzrdX2UKGgGR8BwGptP557gaAdLZ2gIR0A1BNQ0oBq9dX2UKGgGR8Bccb/S6UaAaAdLV2gIR0A1DnOSntOVdX2UKGgGR8BxZbDFZPl/aAdLgWgIR0A1ENQj2SMcdX2UKGgGR8BQiifthNM5aAdLUGgIR0A1HT+NtIkJdX2UKGgGR8BYFNFjNIK/aAdLP2gIR0A1I2l2vB8AdX2UKGgGR8Ba4kFnqVyFaAdLU2gIR0A1LY7q6e5GdX2UKGgGR8BfIwssg+yJaAdLPmgIR0A1MOs1baAXdX2UKGgGR8BeiKn3ta6jaAdLQGgIR0A1MLZi/fwadX2UKGgGR8BdRxAOavzOaAdLRGgIR0A1N1WKdhAodX2UKGgGR8BkeLSkTHsDaAdLaGgIR0A1O8VHnU2DdX2UKGgGR8Bd6Tjin5zpaAdLbGgIR0A1Px0+1SfldX2UKGgGR8BmEWZTho/SaAdLXWgIR0A1Q5zHS4OMdX2UKGgGR8BaLixVyWAxaAdLZmgIR0A1QwcYIjW1dX2UKGgGR8BdPSAMDwH8aAdLYWgIR0A1S2NvOyE+dX2UKGgGR8BXfnxOLzf8aAdLSGgIR0A1Tnk1dgOSdX2UKGgGR8BLUhgE2YOUaAdLR2gIR0A1V2B8QZn+dX2UKGgGR8BhHPT1CgK4aAdLR2gIR0A1WXwb2lEadX2UKGgGR8Bd9Un9ehPCaAdLVWgIR0A1W/tY0VJudX2UKGgGR8BnxGuDBdleaAdLbWgIR0A1jDRc/t6YdX2UKGgGR8Be5B7NSqEOaAdLV2gIR0A1qncclw98dX2UKGgGR8BiBuxIJ7b+aAdLVGgIR0A1raHsTnJUdX2UKGgGR8BVZGlEZzgdaAdLQ2gIR0A1u1R+BpYcdX2UKGgGR8Bh3H+uNgjRaAdLRWgIR0A1vTlkpZwGdX2UKGgGR8BcJ5cgQpWnaAdLY2gIR0A1yayKNyYHdX2UKGgGR8Bh8KhcqvvCaAdLS2gIR0A1zIwudwvQdX2UKGgGR8BgMaKekHlfaAdLamgIR0A1zsQumJm/dX2UKGgGR8BgbdV3ljmTaAdLZmgIR0A11HLA57w8dX2UKGgGR8Btrr6WPcSHaAdLcGgIR0A12I55qubJdX2UKGgGR8Brbb1kDp1SaAdLUWgIR0A11ub7TDwZdX2UKGgGR8ByEfPRiPQwaAdLaWgIR0A13FUQ04zadX2UKGgGR8Bek7H2h7E6aAdLSmgIR0A12byH2ys0dX2UKGgGR8BzZmom5UcXaAdLaWgIR0A135nDiwSrdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54ba9367fe73233b74749c88b98e5005c0d47305771d770efdcb6f1c3e5378ed
|
3 |
+
size 88362
|
ppo-LunarLander-v2-1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a4a9fd6c56e09026430f1bb3ef3c1bbac7550357d2048b215770bfc10daaf6e
|
3 |
+
size 43762
|
ppo-LunarLander-v2-1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (226 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -162.96601566250902, "std_reward": 58.63665384029813, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T03:10:11.144730"}
|