michaelfeil
commited on
Commit
•
b6f0cde
1
Parent(s):
3e84a86
Update README.md
Browse files
README.md
CHANGED
@@ -4,2940 +4,24 @@ tags:
|
|
4 |
- feature-extraction
|
5 |
- sentence-similarity
|
6 |
- transformers
|
7 |
-
- mteb
|
8 |
-
model-index:
|
9 |
-
- name: bge-small-en-v1.5
|
10 |
-
results:
|
11 |
-
- task:
|
12 |
-
type: Classification
|
13 |
-
dataset:
|
14 |
-
type: mteb/amazon_counterfactual
|
15 |
-
name: MTEB AmazonCounterfactualClassification (en)
|
16 |
-
config: en
|
17 |
-
split: test
|
18 |
-
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
19 |
-
metrics:
|
20 |
-
- type: accuracy
|
21 |
-
value: 73.79104477611939
|
22 |
-
- type: ap
|
23 |
-
value: 37.21923821573361
|
24 |
-
- type: f1
|
25 |
-
value: 68.0914945617093
|
26 |
-
- task:
|
27 |
-
type: Classification
|
28 |
-
dataset:
|
29 |
-
type: mteb/amazon_polarity
|
30 |
-
name: MTEB AmazonPolarityClassification
|
31 |
-
config: default
|
32 |
-
split: test
|
33 |
-
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
34 |
-
metrics:
|
35 |
-
- type: accuracy
|
36 |
-
value: 92.75377499999999
|
37 |
-
- type: ap
|
38 |
-
value: 89.46766124546022
|
39 |
-
- type: f1
|
40 |
-
value: 92.73884001331487
|
41 |
-
- task:
|
42 |
-
type: Classification
|
43 |
-
dataset:
|
44 |
-
type: mteb/amazon_reviews_multi
|
45 |
-
name: MTEB AmazonReviewsClassification (en)
|
46 |
-
config: en
|
47 |
-
split: test
|
48 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
49 |
-
metrics:
|
50 |
-
- type: accuracy
|
51 |
-
value: 46.986
|
52 |
-
- type: f1
|
53 |
-
value: 46.55936786727896
|
54 |
-
- task:
|
55 |
-
type: Retrieval
|
56 |
-
dataset:
|
57 |
-
type: arguana
|
58 |
-
name: MTEB ArguAna
|
59 |
-
config: default
|
60 |
-
split: test
|
61 |
-
revision: None
|
62 |
-
metrics:
|
63 |
-
- type: map_at_1
|
64 |
-
value: 35.846000000000004
|
65 |
-
- type: map_at_10
|
66 |
-
value: 51.388
|
67 |
-
- type: map_at_100
|
68 |
-
value: 52.132999999999996
|
69 |
-
- type: map_at_1000
|
70 |
-
value: 52.141000000000005
|
71 |
-
- type: map_at_3
|
72 |
-
value: 47.037
|
73 |
-
- type: map_at_5
|
74 |
-
value: 49.579
|
75 |
-
- type: mrr_at_1
|
76 |
-
value: 36.558
|
77 |
-
- type: mrr_at_10
|
78 |
-
value: 51.658
|
79 |
-
- type: mrr_at_100
|
80 |
-
value: 52.402
|
81 |
-
- type: mrr_at_1000
|
82 |
-
value: 52.410000000000004
|
83 |
-
- type: mrr_at_3
|
84 |
-
value: 47.345
|
85 |
-
- type: mrr_at_5
|
86 |
-
value: 49.797999999999995
|
87 |
-
- type: ndcg_at_1
|
88 |
-
value: 35.846000000000004
|
89 |
-
- type: ndcg_at_10
|
90 |
-
value: 59.550000000000004
|
91 |
-
- type: ndcg_at_100
|
92 |
-
value: 62.596
|
93 |
-
- type: ndcg_at_1000
|
94 |
-
value: 62.759
|
95 |
-
- type: ndcg_at_3
|
96 |
-
value: 50.666999999999994
|
97 |
-
- type: ndcg_at_5
|
98 |
-
value: 55.228
|
99 |
-
- type: precision_at_1
|
100 |
-
value: 35.846000000000004
|
101 |
-
- type: precision_at_10
|
102 |
-
value: 8.542
|
103 |
-
- type: precision_at_100
|
104 |
-
value: 0.984
|
105 |
-
- type: precision_at_1000
|
106 |
-
value: 0.1
|
107 |
-
- type: precision_at_3
|
108 |
-
value: 20.389
|
109 |
-
- type: precision_at_5
|
110 |
-
value: 14.438
|
111 |
-
- type: recall_at_1
|
112 |
-
value: 35.846000000000004
|
113 |
-
- type: recall_at_10
|
114 |
-
value: 85.42
|
115 |
-
- type: recall_at_100
|
116 |
-
value: 98.43499999999999
|
117 |
-
- type: recall_at_1000
|
118 |
-
value: 99.644
|
119 |
-
- type: recall_at_3
|
120 |
-
value: 61.166
|
121 |
-
- type: recall_at_5
|
122 |
-
value: 72.191
|
123 |
-
- task:
|
124 |
-
type: Clustering
|
125 |
-
dataset:
|
126 |
-
type: mteb/arxiv-clustering-p2p
|
127 |
-
name: MTEB ArxivClusteringP2P
|
128 |
-
config: default
|
129 |
-
split: test
|
130 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
131 |
-
metrics:
|
132 |
-
- type: v_measure
|
133 |
-
value: 47.402770198163594
|
134 |
-
- task:
|
135 |
-
type: Clustering
|
136 |
-
dataset:
|
137 |
-
type: mteb/arxiv-clustering-s2s
|
138 |
-
name: MTEB ArxivClusteringS2S
|
139 |
-
config: default
|
140 |
-
split: test
|
141 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
142 |
-
metrics:
|
143 |
-
- type: v_measure
|
144 |
-
value: 40.01545436974177
|
145 |
-
- task:
|
146 |
-
type: Reranking
|
147 |
-
dataset:
|
148 |
-
type: mteb/askubuntudupquestions-reranking
|
149 |
-
name: MTEB AskUbuntuDupQuestions
|
150 |
-
config: default
|
151 |
-
split: test
|
152 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
153 |
-
metrics:
|
154 |
-
- type: map
|
155 |
-
value: 62.586465273207196
|
156 |
-
- type: mrr
|
157 |
-
value: 74.42169019038825
|
158 |
-
- task:
|
159 |
-
type: STS
|
160 |
-
dataset:
|
161 |
-
type: mteb/biosses-sts
|
162 |
-
name: MTEB BIOSSES
|
163 |
-
config: default
|
164 |
-
split: test
|
165 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
166 |
-
metrics:
|
167 |
-
- type: cos_sim_pearson
|
168 |
-
value: 85.1891186537969
|
169 |
-
- type: cos_sim_spearman
|
170 |
-
value: 83.75492046087288
|
171 |
-
- type: euclidean_pearson
|
172 |
-
value: 84.11766204805357
|
173 |
-
- type: euclidean_spearman
|
174 |
-
value: 84.01456493126516
|
175 |
-
- type: manhattan_pearson
|
176 |
-
value: 84.2132950502772
|
177 |
-
- type: manhattan_spearman
|
178 |
-
value: 83.89227298813377
|
179 |
-
- task:
|
180 |
-
type: Classification
|
181 |
-
dataset:
|
182 |
-
type: mteb/banking77
|
183 |
-
name: MTEB Banking77Classification
|
184 |
-
config: default
|
185 |
-
split: test
|
186 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
187 |
-
metrics:
|
188 |
-
- type: accuracy
|
189 |
-
value: 85.74025974025975
|
190 |
-
- type: f1
|
191 |
-
value: 85.71493566466381
|
192 |
-
- task:
|
193 |
-
type: Clustering
|
194 |
-
dataset:
|
195 |
-
type: mteb/biorxiv-clustering-p2p
|
196 |
-
name: MTEB BiorxivClusteringP2P
|
197 |
-
config: default
|
198 |
-
split: test
|
199 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
200 |
-
metrics:
|
201 |
-
- type: v_measure
|
202 |
-
value: 38.467181385006434
|
203 |
-
- task:
|
204 |
-
type: Clustering
|
205 |
-
dataset:
|
206 |
-
type: mteb/biorxiv-clustering-s2s
|
207 |
-
name: MTEB BiorxivClusteringS2S
|
208 |
-
config: default
|
209 |
-
split: test
|
210 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
211 |
-
metrics:
|
212 |
-
- type: v_measure
|
213 |
-
value: 34.719496037339056
|
214 |
-
- task:
|
215 |
-
type: Retrieval
|
216 |
-
dataset:
|
217 |
-
type: BeIR/cqadupstack
|
218 |
-
name: MTEB CQADupstackAndroidRetrieval
|
219 |
-
config: default
|
220 |
-
split: test
|
221 |
-
revision: None
|
222 |
-
metrics:
|
223 |
-
- type: map_at_1
|
224 |
-
value: 29.587000000000003
|
225 |
-
- type: map_at_10
|
226 |
-
value: 41.114
|
227 |
-
- type: map_at_100
|
228 |
-
value: 42.532
|
229 |
-
- type: map_at_1000
|
230 |
-
value: 42.661
|
231 |
-
- type: map_at_3
|
232 |
-
value: 37.483
|
233 |
-
- type: map_at_5
|
234 |
-
value: 39.652
|
235 |
-
- type: mrr_at_1
|
236 |
-
value: 36.338
|
237 |
-
- type: mrr_at_10
|
238 |
-
value: 46.763
|
239 |
-
- type: mrr_at_100
|
240 |
-
value: 47.393
|
241 |
-
- type: mrr_at_1000
|
242 |
-
value: 47.445
|
243 |
-
- type: mrr_at_3
|
244 |
-
value: 43.538
|
245 |
-
- type: mrr_at_5
|
246 |
-
value: 45.556000000000004
|
247 |
-
- type: ndcg_at_1
|
248 |
-
value: 36.338
|
249 |
-
- type: ndcg_at_10
|
250 |
-
value: 47.658
|
251 |
-
- type: ndcg_at_100
|
252 |
-
value: 52.824000000000005
|
253 |
-
- type: ndcg_at_1000
|
254 |
-
value: 54.913999999999994
|
255 |
-
- type: ndcg_at_3
|
256 |
-
value: 41.989
|
257 |
-
- type: ndcg_at_5
|
258 |
-
value: 44.944
|
259 |
-
- type: precision_at_1
|
260 |
-
value: 36.338
|
261 |
-
- type: precision_at_10
|
262 |
-
value: 9.156
|
263 |
-
- type: precision_at_100
|
264 |
-
value: 1.4789999999999999
|
265 |
-
- type: precision_at_1000
|
266 |
-
value: 0.196
|
267 |
-
- type: precision_at_3
|
268 |
-
value: 20.076
|
269 |
-
- type: precision_at_5
|
270 |
-
value: 14.85
|
271 |
-
- type: recall_at_1
|
272 |
-
value: 29.587000000000003
|
273 |
-
- type: recall_at_10
|
274 |
-
value: 60.746
|
275 |
-
- type: recall_at_100
|
276 |
-
value: 82.157
|
277 |
-
- type: recall_at_1000
|
278 |
-
value: 95.645
|
279 |
-
- type: recall_at_3
|
280 |
-
value: 44.821
|
281 |
-
- type: recall_at_5
|
282 |
-
value: 52.819
|
283 |
-
- task:
|
284 |
-
type: Retrieval
|
285 |
-
dataset:
|
286 |
-
type: BeIR/cqadupstack
|
287 |
-
name: MTEB CQADupstackEnglishRetrieval
|
288 |
-
config: default
|
289 |
-
split: test
|
290 |
-
revision: None
|
291 |
-
metrics:
|
292 |
-
- type: map_at_1
|
293 |
-
value: 30.239
|
294 |
-
- type: map_at_10
|
295 |
-
value: 39.989000000000004
|
296 |
-
- type: map_at_100
|
297 |
-
value: 41.196
|
298 |
-
- type: map_at_1000
|
299 |
-
value: 41.325
|
300 |
-
- type: map_at_3
|
301 |
-
value: 37.261
|
302 |
-
- type: map_at_5
|
303 |
-
value: 38.833
|
304 |
-
- type: mrr_at_1
|
305 |
-
value: 37.516
|
306 |
-
- type: mrr_at_10
|
307 |
-
value: 46.177
|
308 |
-
- type: mrr_at_100
|
309 |
-
value: 46.806
|
310 |
-
- type: mrr_at_1000
|
311 |
-
value: 46.849000000000004
|
312 |
-
- type: mrr_at_3
|
313 |
-
value: 44.002
|
314 |
-
- type: mrr_at_5
|
315 |
-
value: 45.34
|
316 |
-
- type: ndcg_at_1
|
317 |
-
value: 37.516
|
318 |
-
- type: ndcg_at_10
|
319 |
-
value: 45.586
|
320 |
-
- type: ndcg_at_100
|
321 |
-
value: 49.897000000000006
|
322 |
-
- type: ndcg_at_1000
|
323 |
-
value: 51.955
|
324 |
-
- type: ndcg_at_3
|
325 |
-
value: 41.684
|
326 |
-
- type: ndcg_at_5
|
327 |
-
value: 43.617
|
328 |
-
- type: precision_at_1
|
329 |
-
value: 37.516
|
330 |
-
- type: precision_at_10
|
331 |
-
value: 8.522
|
332 |
-
- type: precision_at_100
|
333 |
-
value: 1.374
|
334 |
-
- type: precision_at_1000
|
335 |
-
value: 0.184
|
336 |
-
- type: precision_at_3
|
337 |
-
value: 20.105999999999998
|
338 |
-
- type: precision_at_5
|
339 |
-
value: 14.152999999999999
|
340 |
-
- type: recall_at_1
|
341 |
-
value: 30.239
|
342 |
-
- type: recall_at_10
|
343 |
-
value: 55.03
|
344 |
-
- type: recall_at_100
|
345 |
-
value: 73.375
|
346 |
-
- type: recall_at_1000
|
347 |
-
value: 86.29599999999999
|
348 |
-
- type: recall_at_3
|
349 |
-
value: 43.269000000000005
|
350 |
-
- type: recall_at_5
|
351 |
-
value: 48.878
|
352 |
-
- task:
|
353 |
-
type: Retrieval
|
354 |
-
dataset:
|
355 |
-
type: BeIR/cqadupstack
|
356 |
-
name: MTEB CQADupstackGamingRetrieval
|
357 |
-
config: default
|
358 |
-
split: test
|
359 |
-
revision: None
|
360 |
-
metrics:
|
361 |
-
- type: map_at_1
|
362 |
-
value: 38.338
|
363 |
-
- type: map_at_10
|
364 |
-
value: 50.468999999999994
|
365 |
-
- type: map_at_100
|
366 |
-
value: 51.553000000000004
|
367 |
-
- type: map_at_1000
|
368 |
-
value: 51.608
|
369 |
-
- type: map_at_3
|
370 |
-
value: 47.107
|
371 |
-
- type: map_at_5
|
372 |
-
value: 49.101
|
373 |
-
- type: mrr_at_1
|
374 |
-
value: 44.201
|
375 |
-
- type: mrr_at_10
|
376 |
-
value: 54.057
|
377 |
-
- type: mrr_at_100
|
378 |
-
value: 54.764
|
379 |
-
- type: mrr_at_1000
|
380 |
-
value: 54.791000000000004
|
381 |
-
- type: mrr_at_3
|
382 |
-
value: 51.56699999999999
|
383 |
-
- type: mrr_at_5
|
384 |
-
value: 53.05
|
385 |
-
- type: ndcg_at_1
|
386 |
-
value: 44.201
|
387 |
-
- type: ndcg_at_10
|
388 |
-
value: 56.379000000000005
|
389 |
-
- type: ndcg_at_100
|
390 |
-
value: 60.645
|
391 |
-
- type: ndcg_at_1000
|
392 |
-
value: 61.73499999999999
|
393 |
-
- type: ndcg_at_3
|
394 |
-
value: 50.726000000000006
|
395 |
-
- type: ndcg_at_5
|
396 |
-
value: 53.58500000000001
|
397 |
-
- type: precision_at_1
|
398 |
-
value: 44.201
|
399 |
-
- type: precision_at_10
|
400 |
-
value: 9.141
|
401 |
-
- type: precision_at_100
|
402 |
-
value: 1.216
|
403 |
-
- type: precision_at_1000
|
404 |
-
value: 0.135
|
405 |
-
- type: precision_at_3
|
406 |
-
value: 22.654
|
407 |
-
- type: precision_at_5
|
408 |
-
value: 15.723999999999998
|
409 |
-
- type: recall_at_1
|
410 |
-
value: 38.338
|
411 |
-
- type: recall_at_10
|
412 |
-
value: 70.30499999999999
|
413 |
-
- type: recall_at_100
|
414 |
-
value: 88.77199999999999
|
415 |
-
- type: recall_at_1000
|
416 |
-
value: 96.49799999999999
|
417 |
-
- type: recall_at_3
|
418 |
-
value: 55.218
|
419 |
-
- type: recall_at_5
|
420 |
-
value: 62.104000000000006
|
421 |
-
- task:
|
422 |
-
type: Retrieval
|
423 |
-
dataset:
|
424 |
-
type: BeIR/cqadupstack
|
425 |
-
name: MTEB CQADupstackGisRetrieval
|
426 |
-
config: default
|
427 |
-
split: test
|
428 |
-
revision: None
|
429 |
-
metrics:
|
430 |
-
- type: map_at_1
|
431 |
-
value: 25.682
|
432 |
-
- type: map_at_10
|
433 |
-
value: 33.498
|
434 |
-
- type: map_at_100
|
435 |
-
value: 34.461000000000006
|
436 |
-
- type: map_at_1000
|
437 |
-
value: 34.544000000000004
|
438 |
-
- type: map_at_3
|
439 |
-
value: 30.503999999999998
|
440 |
-
- type: map_at_5
|
441 |
-
value: 32.216
|
442 |
-
- type: mrr_at_1
|
443 |
-
value: 27.683999999999997
|
444 |
-
- type: mrr_at_10
|
445 |
-
value: 35.467999999999996
|
446 |
-
- type: mrr_at_100
|
447 |
-
value: 36.32
|
448 |
-
- type: mrr_at_1000
|
449 |
-
value: 36.386
|
450 |
-
- type: mrr_at_3
|
451 |
-
value: 32.618
|
452 |
-
- type: mrr_at_5
|
453 |
-
value: 34.262
|
454 |
-
- type: ndcg_at_1
|
455 |
-
value: 27.683999999999997
|
456 |
-
- type: ndcg_at_10
|
457 |
-
value: 38.378
|
458 |
-
- type: ndcg_at_100
|
459 |
-
value: 43.288
|
460 |
-
- type: ndcg_at_1000
|
461 |
-
value: 45.413
|
462 |
-
- type: ndcg_at_3
|
463 |
-
value: 32.586
|
464 |
-
- type: ndcg_at_5
|
465 |
-
value: 35.499
|
466 |
-
- type: precision_at_1
|
467 |
-
value: 27.683999999999997
|
468 |
-
- type: precision_at_10
|
469 |
-
value: 5.864
|
470 |
-
- type: precision_at_100
|
471 |
-
value: 0.882
|
472 |
-
- type: precision_at_1000
|
473 |
-
value: 0.11
|
474 |
-
- type: precision_at_3
|
475 |
-
value: 13.446
|
476 |
-
- type: precision_at_5
|
477 |
-
value: 9.718
|
478 |
-
- type: recall_at_1
|
479 |
-
value: 25.682
|
480 |
-
- type: recall_at_10
|
481 |
-
value: 51.712
|
482 |
-
- type: recall_at_100
|
483 |
-
value: 74.446
|
484 |
-
- type: recall_at_1000
|
485 |
-
value: 90.472
|
486 |
-
- type: recall_at_3
|
487 |
-
value: 36.236000000000004
|
488 |
-
- type: recall_at_5
|
489 |
-
value: 43.234
|
490 |
-
- task:
|
491 |
-
type: Retrieval
|
492 |
-
dataset:
|
493 |
-
type: BeIR/cqadupstack
|
494 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
495 |
-
config: default
|
496 |
-
split: test
|
497 |
-
revision: None
|
498 |
-
metrics:
|
499 |
-
- type: map_at_1
|
500 |
-
value: 16.073999999999998
|
501 |
-
- type: map_at_10
|
502 |
-
value: 24.352999999999998
|
503 |
-
- type: map_at_100
|
504 |
-
value: 25.438
|
505 |
-
- type: map_at_1000
|
506 |
-
value: 25.545
|
507 |
-
- type: map_at_3
|
508 |
-
value: 21.614
|
509 |
-
- type: map_at_5
|
510 |
-
value: 23.104
|
511 |
-
- type: mrr_at_1
|
512 |
-
value: 19.776
|
513 |
-
- type: mrr_at_10
|
514 |
-
value: 28.837000000000003
|
515 |
-
- type: mrr_at_100
|
516 |
-
value: 29.755
|
517 |
-
- type: mrr_at_1000
|
518 |
-
value: 29.817
|
519 |
-
- type: mrr_at_3
|
520 |
-
value: 26.201999999999998
|
521 |
-
- type: mrr_at_5
|
522 |
-
value: 27.714
|
523 |
-
- type: ndcg_at_1
|
524 |
-
value: 19.776
|
525 |
-
- type: ndcg_at_10
|
526 |
-
value: 29.701
|
527 |
-
- type: ndcg_at_100
|
528 |
-
value: 35.307
|
529 |
-
- type: ndcg_at_1000
|
530 |
-
value: 37.942
|
531 |
-
- type: ndcg_at_3
|
532 |
-
value: 24.764
|
533 |
-
- type: ndcg_at_5
|
534 |
-
value: 27.025
|
535 |
-
- type: precision_at_1
|
536 |
-
value: 19.776
|
537 |
-
- type: precision_at_10
|
538 |
-
value: 5.659
|
539 |
-
- type: precision_at_100
|
540 |
-
value: 0.971
|
541 |
-
- type: precision_at_1000
|
542 |
-
value: 0.133
|
543 |
-
- type: precision_at_3
|
544 |
-
value: 12.065
|
545 |
-
- type: precision_at_5
|
546 |
-
value: 8.905000000000001
|
547 |
-
- type: recall_at_1
|
548 |
-
value: 16.073999999999998
|
549 |
-
- type: recall_at_10
|
550 |
-
value: 41.647
|
551 |
-
- type: recall_at_100
|
552 |
-
value: 66.884
|
553 |
-
- type: recall_at_1000
|
554 |
-
value: 85.91499999999999
|
555 |
-
- type: recall_at_3
|
556 |
-
value: 27.916
|
557 |
-
- type: recall_at_5
|
558 |
-
value: 33.729
|
559 |
-
- task:
|
560 |
-
type: Retrieval
|
561 |
-
dataset:
|
562 |
-
type: BeIR/cqadupstack
|
563 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
564 |
-
config: default
|
565 |
-
split: test
|
566 |
-
revision: None
|
567 |
-
metrics:
|
568 |
-
- type: map_at_1
|
569 |
-
value: 28.444999999999997
|
570 |
-
- type: map_at_10
|
571 |
-
value: 38.218999999999994
|
572 |
-
- type: map_at_100
|
573 |
-
value: 39.595
|
574 |
-
- type: map_at_1000
|
575 |
-
value: 39.709
|
576 |
-
- type: map_at_3
|
577 |
-
value: 35.586
|
578 |
-
- type: map_at_5
|
579 |
-
value: 36.895
|
580 |
-
- type: mrr_at_1
|
581 |
-
value: 34.841
|
582 |
-
- type: mrr_at_10
|
583 |
-
value: 44.106
|
584 |
-
- type: mrr_at_100
|
585 |
-
value: 44.98
|
586 |
-
- type: mrr_at_1000
|
587 |
-
value: 45.03
|
588 |
-
- type: mrr_at_3
|
589 |
-
value: 41.979
|
590 |
-
- type: mrr_at_5
|
591 |
-
value: 43.047999999999995
|
592 |
-
- type: ndcg_at_1
|
593 |
-
value: 34.841
|
594 |
-
- type: ndcg_at_10
|
595 |
-
value: 43.922
|
596 |
-
- type: ndcg_at_100
|
597 |
-
value: 49.504999999999995
|
598 |
-
- type: ndcg_at_1000
|
599 |
-
value: 51.675000000000004
|
600 |
-
- type: ndcg_at_3
|
601 |
-
value: 39.858
|
602 |
-
- type: ndcg_at_5
|
603 |
-
value: 41.408
|
604 |
-
- type: precision_at_1
|
605 |
-
value: 34.841
|
606 |
-
- type: precision_at_10
|
607 |
-
value: 7.872999999999999
|
608 |
-
- type: precision_at_100
|
609 |
-
value: 1.2449999999999999
|
610 |
-
- type: precision_at_1000
|
611 |
-
value: 0.161
|
612 |
-
- type: precision_at_3
|
613 |
-
value: 18.993
|
614 |
-
- type: precision_at_5
|
615 |
-
value: 13.032
|
616 |
-
- type: recall_at_1
|
617 |
-
value: 28.444999999999997
|
618 |
-
- type: recall_at_10
|
619 |
-
value: 54.984
|
620 |
-
- type: recall_at_100
|
621 |
-
value: 78.342
|
622 |
-
- type: recall_at_1000
|
623 |
-
value: 92.77
|
624 |
-
- type: recall_at_3
|
625 |
-
value: 42.842999999999996
|
626 |
-
- type: recall_at_5
|
627 |
-
value: 47.247
|
628 |
-
- task:
|
629 |
-
type: Retrieval
|
630 |
-
dataset:
|
631 |
-
type: BeIR/cqadupstack
|
632 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
633 |
-
config: default
|
634 |
-
split: test
|
635 |
-
revision: None
|
636 |
-
metrics:
|
637 |
-
- type: map_at_1
|
638 |
-
value: 23.072
|
639 |
-
- type: map_at_10
|
640 |
-
value: 32.354
|
641 |
-
- type: map_at_100
|
642 |
-
value: 33.800000000000004
|
643 |
-
- type: map_at_1000
|
644 |
-
value: 33.908
|
645 |
-
- type: map_at_3
|
646 |
-
value: 29.232000000000003
|
647 |
-
- type: map_at_5
|
648 |
-
value: 31.049
|
649 |
-
- type: mrr_at_1
|
650 |
-
value: 29.110000000000003
|
651 |
-
- type: mrr_at_10
|
652 |
-
value: 38.03
|
653 |
-
- type: mrr_at_100
|
654 |
-
value: 39.032
|
655 |
-
- type: mrr_at_1000
|
656 |
-
value: 39.086999999999996
|
657 |
-
- type: mrr_at_3
|
658 |
-
value: 35.407
|
659 |
-
- type: mrr_at_5
|
660 |
-
value: 36.76
|
661 |
-
- type: ndcg_at_1
|
662 |
-
value: 29.110000000000003
|
663 |
-
- type: ndcg_at_10
|
664 |
-
value: 38.231
|
665 |
-
- type: ndcg_at_100
|
666 |
-
value: 44.425
|
667 |
-
- type: ndcg_at_1000
|
668 |
-
value: 46.771
|
669 |
-
- type: ndcg_at_3
|
670 |
-
value: 33.095
|
671 |
-
- type: ndcg_at_5
|
672 |
-
value: 35.459
|
673 |
-
- type: precision_at_1
|
674 |
-
value: 29.110000000000003
|
675 |
-
- type: precision_at_10
|
676 |
-
value: 7.215000000000001
|
677 |
-
- type: precision_at_100
|
678 |
-
value: 1.2109999999999999
|
679 |
-
- type: precision_at_1000
|
680 |
-
value: 0.157
|
681 |
-
- type: precision_at_3
|
682 |
-
value: 16.058
|
683 |
-
- type: precision_at_5
|
684 |
-
value: 11.644
|
685 |
-
- type: recall_at_1
|
686 |
-
value: 23.072
|
687 |
-
- type: recall_at_10
|
688 |
-
value: 50.285999999999994
|
689 |
-
- type: recall_at_100
|
690 |
-
value: 76.596
|
691 |
-
- type: recall_at_1000
|
692 |
-
value: 92.861
|
693 |
-
- type: recall_at_3
|
694 |
-
value: 35.702
|
695 |
-
- type: recall_at_5
|
696 |
-
value: 42.152
|
697 |
-
- task:
|
698 |
-
type: Retrieval
|
699 |
-
dataset:
|
700 |
-
type: BeIR/cqadupstack
|
701 |
-
name: MTEB CQADupstackRetrieval
|
702 |
-
config: default
|
703 |
-
split: test
|
704 |
-
revision: None
|
705 |
-
metrics:
|
706 |
-
- type: map_at_1
|
707 |
-
value: 24.937916666666666
|
708 |
-
- type: map_at_10
|
709 |
-
value: 33.755250000000004
|
710 |
-
- type: map_at_100
|
711 |
-
value: 34.955999999999996
|
712 |
-
- type: map_at_1000
|
713 |
-
value: 35.070499999999996
|
714 |
-
- type: map_at_3
|
715 |
-
value: 30.98708333333333
|
716 |
-
- type: map_at_5
|
717 |
-
value: 32.51491666666666
|
718 |
-
- type: mrr_at_1
|
719 |
-
value: 29.48708333333333
|
720 |
-
- type: mrr_at_10
|
721 |
-
value: 37.92183333333334
|
722 |
-
- type: mrr_at_100
|
723 |
-
value: 38.76583333333333
|
724 |
-
- type: mrr_at_1000
|
725 |
-
value: 38.82466666666667
|
726 |
-
- type: mrr_at_3
|
727 |
-
value: 35.45125
|
728 |
-
- type: mrr_at_5
|
729 |
-
value: 36.827000000000005
|
730 |
-
- type: ndcg_at_1
|
731 |
-
value: 29.48708333333333
|
732 |
-
- type: ndcg_at_10
|
733 |
-
value: 39.05225
|
734 |
-
- type: ndcg_at_100
|
735 |
-
value: 44.25983333333334
|
736 |
-
- type: ndcg_at_1000
|
737 |
-
value: 46.568333333333335
|
738 |
-
- type: ndcg_at_3
|
739 |
-
value: 34.271583333333325
|
740 |
-
- type: ndcg_at_5
|
741 |
-
value: 36.483916666666666
|
742 |
-
- type: precision_at_1
|
743 |
-
value: 29.48708333333333
|
744 |
-
- type: precision_at_10
|
745 |
-
value: 6.865749999999999
|
746 |
-
- type: precision_at_100
|
747 |
-
value: 1.1195833333333332
|
748 |
-
- type: precision_at_1000
|
749 |
-
value: 0.15058333333333335
|
750 |
-
- type: precision_at_3
|
751 |
-
value: 15.742083333333333
|
752 |
-
- type: precision_at_5
|
753 |
-
value: 11.221916666666667
|
754 |
-
- type: recall_at_1
|
755 |
-
value: 24.937916666666666
|
756 |
-
- type: recall_at_10
|
757 |
-
value: 50.650416666666665
|
758 |
-
- type: recall_at_100
|
759 |
-
value: 73.55383333333334
|
760 |
-
- type: recall_at_1000
|
761 |
-
value: 89.61691666666667
|
762 |
-
- type: recall_at_3
|
763 |
-
value: 37.27808333333334
|
764 |
-
- type: recall_at_5
|
765 |
-
value: 42.99475
|
766 |
-
- task:
|
767 |
-
type: Retrieval
|
768 |
-
dataset:
|
769 |
-
type: BeIR/cqadupstack
|
770 |
-
name: MTEB CQADupstackStatsRetrieval
|
771 |
-
config: default
|
772 |
-
split: test
|
773 |
-
revision: None
|
774 |
-
metrics:
|
775 |
-
- type: map_at_1
|
776 |
-
value: 23.947
|
777 |
-
- type: map_at_10
|
778 |
-
value: 30.575000000000003
|
779 |
-
- type: map_at_100
|
780 |
-
value: 31.465
|
781 |
-
- type: map_at_1000
|
782 |
-
value: 31.558000000000003
|
783 |
-
- type: map_at_3
|
784 |
-
value: 28.814
|
785 |
-
- type: map_at_5
|
786 |
-
value: 29.738999999999997
|
787 |
-
- type: mrr_at_1
|
788 |
-
value: 26.994
|
789 |
-
- type: mrr_at_10
|
790 |
-
value: 33.415
|
791 |
-
- type: mrr_at_100
|
792 |
-
value: 34.18
|
793 |
-
- type: mrr_at_1000
|
794 |
-
value: 34.245
|
795 |
-
- type: mrr_at_3
|
796 |
-
value: 31.621
|
797 |
-
- type: mrr_at_5
|
798 |
-
value: 32.549
|
799 |
-
- type: ndcg_at_1
|
800 |
-
value: 26.994
|
801 |
-
- type: ndcg_at_10
|
802 |
-
value: 34.482
|
803 |
-
- type: ndcg_at_100
|
804 |
-
value: 38.915
|
805 |
-
- type: ndcg_at_1000
|
806 |
-
value: 41.355
|
807 |
-
- type: ndcg_at_3
|
808 |
-
value: 31.139
|
809 |
-
- type: ndcg_at_5
|
810 |
-
value: 32.589
|
811 |
-
- type: precision_at_1
|
812 |
-
value: 26.994
|
813 |
-
- type: precision_at_10
|
814 |
-
value: 5.322
|
815 |
-
- type: precision_at_100
|
816 |
-
value: 0.8160000000000001
|
817 |
-
- type: precision_at_1000
|
818 |
-
value: 0.11100000000000002
|
819 |
-
- type: precision_at_3
|
820 |
-
value: 13.344000000000001
|
821 |
-
- type: precision_at_5
|
822 |
-
value: 8.988
|
823 |
-
- type: recall_at_1
|
824 |
-
value: 23.947
|
825 |
-
- type: recall_at_10
|
826 |
-
value: 43.647999999999996
|
827 |
-
- type: recall_at_100
|
828 |
-
value: 63.851
|
829 |
-
- type: recall_at_1000
|
830 |
-
value: 82.0
|
831 |
-
- type: recall_at_3
|
832 |
-
value: 34.288000000000004
|
833 |
-
- type: recall_at_5
|
834 |
-
value: 38.117000000000004
|
835 |
-
- task:
|
836 |
-
type: Retrieval
|
837 |
-
dataset:
|
838 |
-
type: BeIR/cqadupstack
|
839 |
-
name: MTEB CQADupstackTexRetrieval
|
840 |
-
config: default
|
841 |
-
split: test
|
842 |
-
revision: None
|
843 |
-
metrics:
|
844 |
-
- type: map_at_1
|
845 |
-
value: 16.197
|
846 |
-
- type: map_at_10
|
847 |
-
value: 22.968
|
848 |
-
- type: map_at_100
|
849 |
-
value: 24.095
|
850 |
-
- type: map_at_1000
|
851 |
-
value: 24.217
|
852 |
-
- type: map_at_3
|
853 |
-
value: 20.771
|
854 |
-
- type: map_at_5
|
855 |
-
value: 21.995
|
856 |
-
- type: mrr_at_1
|
857 |
-
value: 19.511
|
858 |
-
- type: mrr_at_10
|
859 |
-
value: 26.55
|
860 |
-
- type: mrr_at_100
|
861 |
-
value: 27.500999999999998
|
862 |
-
- type: mrr_at_1000
|
863 |
-
value: 27.578999999999997
|
864 |
-
- type: mrr_at_3
|
865 |
-
value: 24.421
|
866 |
-
- type: mrr_at_5
|
867 |
-
value: 25.604
|
868 |
-
- type: ndcg_at_1
|
869 |
-
value: 19.511
|
870 |
-
- type: ndcg_at_10
|
871 |
-
value: 27.386
|
872 |
-
- type: ndcg_at_100
|
873 |
-
value: 32.828
|
874 |
-
- type: ndcg_at_1000
|
875 |
-
value: 35.739
|
876 |
-
- type: ndcg_at_3
|
877 |
-
value: 23.405
|
878 |
-
- type: ndcg_at_5
|
879 |
-
value: 25.255
|
880 |
-
- type: precision_at_1
|
881 |
-
value: 19.511
|
882 |
-
- type: precision_at_10
|
883 |
-
value: 5.017
|
884 |
-
- type: precision_at_100
|
885 |
-
value: 0.91
|
886 |
-
- type: precision_at_1000
|
887 |
-
value: 0.133
|
888 |
-
- type: precision_at_3
|
889 |
-
value: 11.023
|
890 |
-
- type: precision_at_5
|
891 |
-
value: 8.025
|
892 |
-
- type: recall_at_1
|
893 |
-
value: 16.197
|
894 |
-
- type: recall_at_10
|
895 |
-
value: 37.09
|
896 |
-
- type: recall_at_100
|
897 |
-
value: 61.778
|
898 |
-
- type: recall_at_1000
|
899 |
-
value: 82.56599999999999
|
900 |
-
- type: recall_at_3
|
901 |
-
value: 26.034000000000002
|
902 |
-
- type: recall_at_5
|
903 |
-
value: 30.762
|
904 |
-
- task:
|
905 |
-
type: Retrieval
|
906 |
-
dataset:
|
907 |
-
type: BeIR/cqadupstack
|
908 |
-
name: MTEB CQADupstackUnixRetrieval
|
909 |
-
config: default
|
910 |
-
split: test
|
911 |
-
revision: None
|
912 |
-
metrics:
|
913 |
-
- type: map_at_1
|
914 |
-
value: 25.41
|
915 |
-
- type: map_at_10
|
916 |
-
value: 33.655
|
917 |
-
- type: map_at_100
|
918 |
-
value: 34.892
|
919 |
-
- type: map_at_1000
|
920 |
-
value: 34.995
|
921 |
-
- type: map_at_3
|
922 |
-
value: 30.94
|
923 |
-
- type: map_at_5
|
924 |
-
value: 32.303
|
925 |
-
- type: mrr_at_1
|
926 |
-
value: 29.477999999999998
|
927 |
-
- type: mrr_at_10
|
928 |
-
value: 37.443
|
929 |
-
- type: mrr_at_100
|
930 |
-
value: 38.383
|
931 |
-
- type: mrr_at_1000
|
932 |
-
value: 38.440000000000005
|
933 |
-
- type: mrr_at_3
|
934 |
-
value: 34.949999999999996
|
935 |
-
- type: mrr_at_5
|
936 |
-
value: 36.228
|
937 |
-
- type: ndcg_at_1
|
938 |
-
value: 29.477999999999998
|
939 |
-
- type: ndcg_at_10
|
940 |
-
value: 38.769
|
941 |
-
- type: ndcg_at_100
|
942 |
-
value: 44.245000000000005
|
943 |
-
- type: ndcg_at_1000
|
944 |
-
value: 46.593
|
945 |
-
- type: ndcg_at_3
|
946 |
-
value: 33.623
|
947 |
-
- type: ndcg_at_5
|
948 |
-
value: 35.766
|
949 |
-
- type: precision_at_1
|
950 |
-
value: 29.477999999999998
|
951 |
-
- type: precision_at_10
|
952 |
-
value: 6.455
|
953 |
-
- type: precision_at_100
|
954 |
-
value: 1.032
|
955 |
-
- type: precision_at_1000
|
956 |
-
value: 0.135
|
957 |
-
- type: precision_at_3
|
958 |
-
value: 14.893999999999998
|
959 |
-
- type: precision_at_5
|
960 |
-
value: 10.485
|
961 |
-
- type: recall_at_1
|
962 |
-
value: 25.41
|
963 |
-
- type: recall_at_10
|
964 |
-
value: 50.669
|
965 |
-
- type: recall_at_100
|
966 |
-
value: 74.084
|
967 |
-
- type: recall_at_1000
|
968 |
-
value: 90.435
|
969 |
-
- type: recall_at_3
|
970 |
-
value: 36.679
|
971 |
-
- type: recall_at_5
|
972 |
-
value: 41.94
|
973 |
-
- task:
|
974 |
-
type: Retrieval
|
975 |
-
dataset:
|
976 |
-
type: BeIR/cqadupstack
|
977 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
978 |
-
config: default
|
979 |
-
split: test
|
980 |
-
revision: None
|
981 |
-
metrics:
|
982 |
-
- type: map_at_1
|
983 |
-
value: 23.339
|
984 |
-
- type: map_at_10
|
985 |
-
value: 31.852000000000004
|
986 |
-
- type: map_at_100
|
987 |
-
value: 33.411
|
988 |
-
- type: map_at_1000
|
989 |
-
value: 33.62
|
990 |
-
- type: map_at_3
|
991 |
-
value: 28.929
|
992 |
-
- type: map_at_5
|
993 |
-
value: 30.542
|
994 |
-
- type: mrr_at_1
|
995 |
-
value: 28.063
|
996 |
-
- type: mrr_at_10
|
997 |
-
value: 36.301
|
998 |
-
- type: mrr_at_100
|
999 |
-
value: 37.288
|
1000 |
-
- type: mrr_at_1000
|
1001 |
-
value: 37.349
|
1002 |
-
- type: mrr_at_3
|
1003 |
-
value: 33.663
|
1004 |
-
- type: mrr_at_5
|
1005 |
-
value: 35.165
|
1006 |
-
- type: ndcg_at_1
|
1007 |
-
value: 28.063
|
1008 |
-
- type: ndcg_at_10
|
1009 |
-
value: 37.462
|
1010 |
-
- type: ndcg_at_100
|
1011 |
-
value: 43.620999999999995
|
1012 |
-
- type: ndcg_at_1000
|
1013 |
-
value: 46.211
|
1014 |
-
- type: ndcg_at_3
|
1015 |
-
value: 32.68
|
1016 |
-
- type: ndcg_at_5
|
1017 |
-
value: 34.981
|
1018 |
-
- type: precision_at_1
|
1019 |
-
value: 28.063
|
1020 |
-
- type: precision_at_10
|
1021 |
-
value: 7.1739999999999995
|
1022 |
-
- type: precision_at_100
|
1023 |
-
value: 1.486
|
1024 |
-
- type: precision_at_1000
|
1025 |
-
value: 0.23500000000000001
|
1026 |
-
- type: precision_at_3
|
1027 |
-
value: 15.217
|
1028 |
-
- type: precision_at_5
|
1029 |
-
value: 11.265
|
1030 |
-
- type: recall_at_1
|
1031 |
-
value: 23.339
|
1032 |
-
- type: recall_at_10
|
1033 |
-
value: 48.376999999999995
|
1034 |
-
- type: recall_at_100
|
1035 |
-
value: 76.053
|
1036 |
-
- type: recall_at_1000
|
1037 |
-
value: 92.455
|
1038 |
-
- type: recall_at_3
|
1039 |
-
value: 34.735
|
1040 |
-
- type: recall_at_5
|
1041 |
-
value: 40.71
|
1042 |
-
- task:
|
1043 |
-
type: Retrieval
|
1044 |
-
dataset:
|
1045 |
-
type: BeIR/cqadupstack
|
1046 |
-
name: MTEB CQADupstackWordpressRetrieval
|
1047 |
-
config: default
|
1048 |
-
split: test
|
1049 |
-
revision: None
|
1050 |
-
metrics:
|
1051 |
-
- type: map_at_1
|
1052 |
-
value: 18.925
|
1053 |
-
- type: map_at_10
|
1054 |
-
value: 26.017000000000003
|
1055 |
-
- type: map_at_100
|
1056 |
-
value: 27.034000000000002
|
1057 |
-
- type: map_at_1000
|
1058 |
-
value: 27.156000000000002
|
1059 |
-
- type: map_at_3
|
1060 |
-
value: 23.604
|
1061 |
-
- type: map_at_5
|
1062 |
-
value: 24.75
|
1063 |
-
- type: mrr_at_1
|
1064 |
-
value: 20.333000000000002
|
1065 |
-
- type: mrr_at_10
|
1066 |
-
value: 27.915
|
1067 |
-
- type: mrr_at_100
|
1068 |
-
value: 28.788000000000004
|
1069 |
-
- type: mrr_at_1000
|
1070 |
-
value: 28.877999999999997
|
1071 |
-
- type: mrr_at_3
|
1072 |
-
value: 25.446999999999996
|
1073 |
-
- type: mrr_at_5
|
1074 |
-
value: 26.648
|
1075 |
-
- type: ndcg_at_1
|
1076 |
-
value: 20.333000000000002
|
1077 |
-
- type: ndcg_at_10
|
1078 |
-
value: 30.673000000000002
|
1079 |
-
- type: ndcg_at_100
|
1080 |
-
value: 35.618
|
1081 |
-
- type: ndcg_at_1000
|
1082 |
-
value: 38.517
|
1083 |
-
- type: ndcg_at_3
|
1084 |
-
value: 25.71
|
1085 |
-
- type: ndcg_at_5
|
1086 |
-
value: 27.679
|
1087 |
-
- type: precision_at_1
|
1088 |
-
value: 20.333000000000002
|
1089 |
-
- type: precision_at_10
|
1090 |
-
value: 4.9910000000000005
|
1091 |
-
- type: precision_at_100
|
1092 |
-
value: 0.8130000000000001
|
1093 |
-
- type: precision_at_1000
|
1094 |
-
value: 0.117
|
1095 |
-
- type: precision_at_3
|
1096 |
-
value: 11.029
|
1097 |
-
- type: precision_at_5
|
1098 |
-
value: 7.8740000000000006
|
1099 |
-
- type: recall_at_1
|
1100 |
-
value: 18.925
|
1101 |
-
- type: recall_at_10
|
1102 |
-
value: 43.311
|
1103 |
-
- type: recall_at_100
|
1104 |
-
value: 66.308
|
1105 |
-
- type: recall_at_1000
|
1106 |
-
value: 87.49
|
1107 |
-
- type: recall_at_3
|
1108 |
-
value: 29.596
|
1109 |
-
- type: recall_at_5
|
1110 |
-
value: 34.245
|
1111 |
-
- task:
|
1112 |
-
type: Retrieval
|
1113 |
-
dataset:
|
1114 |
-
type: climate-fever
|
1115 |
-
name: MTEB ClimateFEVER
|
1116 |
-
config: default
|
1117 |
-
split: test
|
1118 |
-
revision: None
|
1119 |
-
metrics:
|
1120 |
-
- type: map_at_1
|
1121 |
-
value: 13.714
|
1122 |
-
- type: map_at_10
|
1123 |
-
value: 23.194
|
1124 |
-
- type: map_at_100
|
1125 |
-
value: 24.976000000000003
|
1126 |
-
- type: map_at_1000
|
1127 |
-
value: 25.166
|
1128 |
-
- type: map_at_3
|
1129 |
-
value: 19.709
|
1130 |
-
- type: map_at_5
|
1131 |
-
value: 21.523999999999997
|
1132 |
-
- type: mrr_at_1
|
1133 |
-
value: 30.619000000000003
|
1134 |
-
- type: mrr_at_10
|
1135 |
-
value: 42.563
|
1136 |
-
- type: mrr_at_100
|
1137 |
-
value: 43.386
|
1138 |
-
- type: mrr_at_1000
|
1139 |
-
value: 43.423
|
1140 |
-
- type: mrr_at_3
|
1141 |
-
value: 39.555
|
1142 |
-
- type: mrr_at_5
|
1143 |
-
value: 41.268
|
1144 |
-
- type: ndcg_at_1
|
1145 |
-
value: 30.619000000000003
|
1146 |
-
- type: ndcg_at_10
|
1147 |
-
value: 31.836
|
1148 |
-
- type: ndcg_at_100
|
1149 |
-
value: 38.652
|
1150 |
-
- type: ndcg_at_1000
|
1151 |
-
value: 42.088
|
1152 |
-
- type: ndcg_at_3
|
1153 |
-
value: 26.733
|
1154 |
-
- type: ndcg_at_5
|
1155 |
-
value: 28.435
|
1156 |
-
- type: precision_at_1
|
1157 |
-
value: 30.619000000000003
|
1158 |
-
- type: precision_at_10
|
1159 |
-
value: 9.751999999999999
|
1160 |
-
- type: precision_at_100
|
1161 |
-
value: 1.71
|
1162 |
-
- type: precision_at_1000
|
1163 |
-
value: 0.23500000000000001
|
1164 |
-
- type: precision_at_3
|
1165 |
-
value: 19.935
|
1166 |
-
- type: precision_at_5
|
1167 |
-
value: 14.984
|
1168 |
-
- type: recall_at_1
|
1169 |
-
value: 13.714
|
1170 |
-
- type: recall_at_10
|
1171 |
-
value: 37.26
|
1172 |
-
- type: recall_at_100
|
1173 |
-
value: 60.546
|
1174 |
-
- type: recall_at_1000
|
1175 |
-
value: 79.899
|
1176 |
-
- type: recall_at_3
|
1177 |
-
value: 24.325
|
1178 |
-
- type: recall_at_5
|
1179 |
-
value: 29.725
|
1180 |
-
- task:
|
1181 |
-
type: Retrieval
|
1182 |
-
dataset:
|
1183 |
-
type: dbpedia-entity
|
1184 |
-
name: MTEB DBPedia
|
1185 |
-
config: default
|
1186 |
-
split: test
|
1187 |
-
revision: None
|
1188 |
-
metrics:
|
1189 |
-
- type: map_at_1
|
1190 |
-
value: 8.462
|
1191 |
-
- type: map_at_10
|
1192 |
-
value: 18.637
|
1193 |
-
- type: map_at_100
|
1194 |
-
value: 26.131999999999998
|
1195 |
-
- type: map_at_1000
|
1196 |
-
value: 27.607
|
1197 |
-
- type: map_at_3
|
1198 |
-
value: 13.333
|
1199 |
-
- type: map_at_5
|
1200 |
-
value: 15.654000000000002
|
1201 |
-
- type: mrr_at_1
|
1202 |
-
value: 66.25
|
1203 |
-
- type: mrr_at_10
|
1204 |
-
value: 74.32600000000001
|
1205 |
-
- type: mrr_at_100
|
1206 |
-
value: 74.60900000000001
|
1207 |
-
- type: mrr_at_1000
|
1208 |
-
value: 74.62
|
1209 |
-
- type: mrr_at_3
|
1210 |
-
value: 72.667
|
1211 |
-
- type: mrr_at_5
|
1212 |
-
value: 73.817
|
1213 |
-
- type: ndcg_at_1
|
1214 |
-
value: 53.87499999999999
|
1215 |
-
- type: ndcg_at_10
|
1216 |
-
value: 40.028999999999996
|
1217 |
-
- type: ndcg_at_100
|
1218 |
-
value: 44.199
|
1219 |
-
- type: ndcg_at_1000
|
1220 |
-
value: 51.629999999999995
|
1221 |
-
- type: ndcg_at_3
|
1222 |
-
value: 44.113
|
1223 |
-
- type: ndcg_at_5
|
1224 |
-
value: 41.731
|
1225 |
-
- type: precision_at_1
|
1226 |
-
value: 66.25
|
1227 |
-
- type: precision_at_10
|
1228 |
-
value: 31.900000000000002
|
1229 |
-
- type: precision_at_100
|
1230 |
-
value: 10.043000000000001
|
1231 |
-
- type: precision_at_1000
|
1232 |
-
value: 1.926
|
1233 |
-
- type: precision_at_3
|
1234 |
-
value: 47.417
|
1235 |
-
- type: precision_at_5
|
1236 |
-
value: 40.65
|
1237 |
-
- type: recall_at_1
|
1238 |
-
value: 8.462
|
1239 |
-
- type: recall_at_10
|
1240 |
-
value: 24.293
|
1241 |
-
- type: recall_at_100
|
1242 |
-
value: 50.146
|
1243 |
-
- type: recall_at_1000
|
1244 |
-
value: 74.034
|
1245 |
-
- type: recall_at_3
|
1246 |
-
value: 14.967
|
1247 |
-
- type: recall_at_5
|
1248 |
-
value: 18.682000000000002
|
1249 |
-
- task:
|
1250 |
-
type: Classification
|
1251 |
-
dataset:
|
1252 |
-
type: mteb/emotion
|
1253 |
-
name: MTEB EmotionClassification
|
1254 |
-
config: default
|
1255 |
-
split: test
|
1256 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1257 |
-
metrics:
|
1258 |
-
- type: accuracy
|
1259 |
-
value: 47.84499999999999
|
1260 |
-
- type: f1
|
1261 |
-
value: 42.48106691979349
|
1262 |
-
- task:
|
1263 |
-
type: Retrieval
|
1264 |
-
dataset:
|
1265 |
-
type: fever
|
1266 |
-
name: MTEB FEVER
|
1267 |
-
config: default
|
1268 |
-
split: test
|
1269 |
-
revision: None
|
1270 |
-
metrics:
|
1271 |
-
- type: map_at_1
|
1272 |
-
value: 74.034
|
1273 |
-
- type: map_at_10
|
1274 |
-
value: 82.76
|
1275 |
-
- type: map_at_100
|
1276 |
-
value: 82.968
|
1277 |
-
- type: map_at_1000
|
1278 |
-
value: 82.98299999999999
|
1279 |
-
- type: map_at_3
|
1280 |
-
value: 81.768
|
1281 |
-
- type: map_at_5
|
1282 |
-
value: 82.418
|
1283 |
-
- type: mrr_at_1
|
1284 |
-
value: 80.048
|
1285 |
-
- type: mrr_at_10
|
1286 |
-
value: 87.64999999999999
|
1287 |
-
- type: mrr_at_100
|
1288 |
-
value: 87.712
|
1289 |
-
- type: mrr_at_1000
|
1290 |
-
value: 87.713
|
1291 |
-
- type: mrr_at_3
|
1292 |
-
value: 87.01100000000001
|
1293 |
-
- type: mrr_at_5
|
1294 |
-
value: 87.466
|
1295 |
-
- type: ndcg_at_1
|
1296 |
-
value: 80.048
|
1297 |
-
- type: ndcg_at_10
|
1298 |
-
value: 86.643
|
1299 |
-
- type: ndcg_at_100
|
1300 |
-
value: 87.361
|
1301 |
-
- type: ndcg_at_1000
|
1302 |
-
value: 87.606
|
1303 |
-
- type: ndcg_at_3
|
1304 |
-
value: 85.137
|
1305 |
-
- type: ndcg_at_5
|
1306 |
-
value: 86.016
|
1307 |
-
- type: precision_at_1
|
1308 |
-
value: 80.048
|
1309 |
-
- type: precision_at_10
|
1310 |
-
value: 10.372
|
1311 |
-
- type: precision_at_100
|
1312 |
-
value: 1.093
|
1313 |
-
- type: precision_at_1000
|
1314 |
-
value: 0.11299999999999999
|
1315 |
-
- type: precision_at_3
|
1316 |
-
value: 32.638
|
1317 |
-
- type: precision_at_5
|
1318 |
-
value: 20.177
|
1319 |
-
- type: recall_at_1
|
1320 |
-
value: 74.034
|
1321 |
-
- type: recall_at_10
|
1322 |
-
value: 93.769
|
1323 |
-
- type: recall_at_100
|
1324 |
-
value: 96.569
|
1325 |
-
- type: recall_at_1000
|
1326 |
-
value: 98.039
|
1327 |
-
- type: recall_at_3
|
1328 |
-
value: 89.581
|
1329 |
-
- type: recall_at_5
|
1330 |
-
value: 91.906
|
1331 |
-
- task:
|
1332 |
-
type: Retrieval
|
1333 |
-
dataset:
|
1334 |
-
type: fiqa
|
1335 |
-
name: MTEB FiQA2018
|
1336 |
-
config: default
|
1337 |
-
split: test
|
1338 |
-
revision: None
|
1339 |
-
metrics:
|
1340 |
-
- type: map_at_1
|
1341 |
-
value: 20.5
|
1342 |
-
- type: map_at_10
|
1343 |
-
value: 32.857
|
1344 |
-
- type: map_at_100
|
1345 |
-
value: 34.589
|
1346 |
-
- type: map_at_1000
|
1347 |
-
value: 34.778
|
1348 |
-
- type: map_at_3
|
1349 |
-
value: 29.160999999999998
|
1350 |
-
- type: map_at_5
|
1351 |
-
value: 31.033
|
1352 |
-
- type: mrr_at_1
|
1353 |
-
value: 40.123
|
1354 |
-
- type: mrr_at_10
|
1355 |
-
value: 48.776
|
1356 |
-
- type: mrr_at_100
|
1357 |
-
value: 49.495
|
1358 |
-
- type: mrr_at_1000
|
1359 |
-
value: 49.539
|
1360 |
-
- type: mrr_at_3
|
1361 |
-
value: 46.605000000000004
|
1362 |
-
- type: mrr_at_5
|
1363 |
-
value: 47.654
|
1364 |
-
- type: ndcg_at_1
|
1365 |
-
value: 40.123
|
1366 |
-
- type: ndcg_at_10
|
1367 |
-
value: 40.343
|
1368 |
-
- type: ndcg_at_100
|
1369 |
-
value: 46.56
|
1370 |
-
- type: ndcg_at_1000
|
1371 |
-
value: 49.777
|
1372 |
-
- type: ndcg_at_3
|
1373 |
-
value: 37.322
|
1374 |
-
- type: ndcg_at_5
|
1375 |
-
value: 37.791000000000004
|
1376 |
-
- type: precision_at_1
|
1377 |
-
value: 40.123
|
1378 |
-
- type: precision_at_10
|
1379 |
-
value: 11.08
|
1380 |
-
- type: precision_at_100
|
1381 |
-
value: 1.752
|
1382 |
-
- type: precision_at_1000
|
1383 |
-
value: 0.232
|
1384 |
-
- type: precision_at_3
|
1385 |
-
value: 24.897
|
1386 |
-
- type: precision_at_5
|
1387 |
-
value: 17.809
|
1388 |
-
- type: recall_at_1
|
1389 |
-
value: 20.5
|
1390 |
-
- type: recall_at_10
|
1391 |
-
value: 46.388
|
1392 |
-
- type: recall_at_100
|
1393 |
-
value: 69.552
|
1394 |
-
- type: recall_at_1000
|
1395 |
-
value: 89.011
|
1396 |
-
- type: recall_at_3
|
1397 |
-
value: 33.617999999999995
|
1398 |
-
- type: recall_at_5
|
1399 |
-
value: 38.211
|
1400 |
-
- task:
|
1401 |
-
type: Retrieval
|
1402 |
-
dataset:
|
1403 |
-
type: hotpotqa
|
1404 |
-
name: MTEB HotpotQA
|
1405 |
-
config: default
|
1406 |
-
split: test
|
1407 |
-
revision: None
|
1408 |
-
metrics:
|
1409 |
-
- type: map_at_1
|
1410 |
-
value: 39.135999999999996
|
1411 |
-
- type: map_at_10
|
1412 |
-
value: 61.673
|
1413 |
-
- type: map_at_100
|
1414 |
-
value: 62.562
|
1415 |
-
- type: map_at_1000
|
1416 |
-
value: 62.62
|
1417 |
-
- type: map_at_3
|
1418 |
-
value: 58.467999999999996
|
1419 |
-
- type: map_at_5
|
1420 |
-
value: 60.463
|
1421 |
-
- type: mrr_at_1
|
1422 |
-
value: 78.271
|
1423 |
-
- type: mrr_at_10
|
1424 |
-
value: 84.119
|
1425 |
-
- type: mrr_at_100
|
1426 |
-
value: 84.29299999999999
|
1427 |
-
- type: mrr_at_1000
|
1428 |
-
value: 84.299
|
1429 |
-
- type: mrr_at_3
|
1430 |
-
value: 83.18900000000001
|
1431 |
-
- type: mrr_at_5
|
1432 |
-
value: 83.786
|
1433 |
-
- type: ndcg_at_1
|
1434 |
-
value: 78.271
|
1435 |
-
- type: ndcg_at_10
|
1436 |
-
value: 69.935
|
1437 |
-
- type: ndcg_at_100
|
1438 |
-
value: 73.01299999999999
|
1439 |
-
- type: ndcg_at_1000
|
1440 |
-
value: 74.126
|
1441 |
-
- type: ndcg_at_3
|
1442 |
-
value: 65.388
|
1443 |
-
- type: ndcg_at_5
|
1444 |
-
value: 67.906
|
1445 |
-
- type: precision_at_1
|
1446 |
-
value: 78.271
|
1447 |
-
- type: precision_at_10
|
1448 |
-
value: 14.562
|
1449 |
-
- type: precision_at_100
|
1450 |
-
value: 1.6969999999999998
|
1451 |
-
- type: precision_at_1000
|
1452 |
-
value: 0.184
|
1453 |
-
- type: precision_at_3
|
1454 |
-
value: 41.841
|
1455 |
-
- type: precision_at_5
|
1456 |
-
value: 27.087
|
1457 |
-
- type: recall_at_1
|
1458 |
-
value: 39.135999999999996
|
1459 |
-
- type: recall_at_10
|
1460 |
-
value: 72.809
|
1461 |
-
- type: recall_at_100
|
1462 |
-
value: 84.86200000000001
|
1463 |
-
- type: recall_at_1000
|
1464 |
-
value: 92.208
|
1465 |
-
- type: recall_at_3
|
1466 |
-
value: 62.76199999999999
|
1467 |
-
- type: recall_at_5
|
1468 |
-
value: 67.718
|
1469 |
-
- task:
|
1470 |
-
type: Classification
|
1471 |
-
dataset:
|
1472 |
-
type: mteb/imdb
|
1473 |
-
name: MTEB ImdbClassification
|
1474 |
-
config: default
|
1475 |
-
split: test
|
1476 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1477 |
-
metrics:
|
1478 |
-
- type: accuracy
|
1479 |
-
value: 90.60600000000001
|
1480 |
-
- type: ap
|
1481 |
-
value: 86.6579587804335
|
1482 |
-
- type: f1
|
1483 |
-
value: 90.5938853929307
|
1484 |
-
- task:
|
1485 |
-
type: Retrieval
|
1486 |
-
dataset:
|
1487 |
-
type: msmarco
|
1488 |
-
name: MTEB MSMARCO
|
1489 |
-
config: default
|
1490 |
-
split: dev
|
1491 |
-
revision: None
|
1492 |
-
metrics:
|
1493 |
-
- type: map_at_1
|
1494 |
-
value: 21.852
|
1495 |
-
- type: map_at_10
|
1496 |
-
value: 33.982
|
1497 |
-
- type: map_at_100
|
1498 |
-
value: 35.116
|
1499 |
-
- type: map_at_1000
|
1500 |
-
value: 35.167
|
1501 |
-
- type: map_at_3
|
1502 |
-
value: 30.134
|
1503 |
-
- type: map_at_5
|
1504 |
-
value: 32.340999999999994
|
1505 |
-
- type: mrr_at_1
|
1506 |
-
value: 22.479
|
1507 |
-
- type: mrr_at_10
|
1508 |
-
value: 34.594
|
1509 |
-
- type: mrr_at_100
|
1510 |
-
value: 35.672
|
1511 |
-
- type: mrr_at_1000
|
1512 |
-
value: 35.716
|
1513 |
-
- type: mrr_at_3
|
1514 |
-
value: 30.84
|
1515 |
-
- type: mrr_at_5
|
1516 |
-
value: 32.998
|
1517 |
-
- type: ndcg_at_1
|
1518 |
-
value: 22.493
|
1519 |
-
- type: ndcg_at_10
|
1520 |
-
value: 40.833000000000006
|
1521 |
-
- type: ndcg_at_100
|
1522 |
-
value: 46.357
|
1523 |
-
- type: ndcg_at_1000
|
1524 |
-
value: 47.637
|
1525 |
-
- type: ndcg_at_3
|
1526 |
-
value: 32.995999999999995
|
1527 |
-
- type: ndcg_at_5
|
1528 |
-
value: 36.919000000000004
|
1529 |
-
- type: precision_at_1
|
1530 |
-
value: 22.493
|
1531 |
-
- type: precision_at_10
|
1532 |
-
value: 6.465999999999999
|
1533 |
-
- type: precision_at_100
|
1534 |
-
value: 0.9249999999999999
|
1535 |
-
- type: precision_at_1000
|
1536 |
-
value: 0.104
|
1537 |
-
- type: precision_at_3
|
1538 |
-
value: 14.030999999999999
|
1539 |
-
- type: precision_at_5
|
1540 |
-
value: 10.413
|
1541 |
-
- type: recall_at_1
|
1542 |
-
value: 21.852
|
1543 |
-
- type: recall_at_10
|
1544 |
-
value: 61.934999999999995
|
1545 |
-
- type: recall_at_100
|
1546 |
-
value: 87.611
|
1547 |
-
- type: recall_at_1000
|
1548 |
-
value: 97.441
|
1549 |
-
- type: recall_at_3
|
1550 |
-
value: 40.583999999999996
|
1551 |
-
- type: recall_at_5
|
1552 |
-
value: 49.992999999999995
|
1553 |
-
- task:
|
1554 |
-
type: Classification
|
1555 |
-
dataset:
|
1556 |
-
type: mteb/mtop_domain
|
1557 |
-
name: MTEB MTOPDomainClassification (en)
|
1558 |
-
config: en
|
1559 |
-
split: test
|
1560 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1561 |
-
metrics:
|
1562 |
-
- type: accuracy
|
1563 |
-
value: 93.36069311445507
|
1564 |
-
- type: f1
|
1565 |
-
value: 93.16456330371453
|
1566 |
-
- task:
|
1567 |
-
type: Classification
|
1568 |
-
dataset:
|
1569 |
-
type: mteb/mtop_intent
|
1570 |
-
name: MTEB MTOPIntentClassification (en)
|
1571 |
-
config: en
|
1572 |
-
split: test
|
1573 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1574 |
-
metrics:
|
1575 |
-
- type: accuracy
|
1576 |
-
value: 74.74692202462381
|
1577 |
-
- type: f1
|
1578 |
-
value: 58.17903579421599
|
1579 |
-
- task:
|
1580 |
-
type: Classification
|
1581 |
-
dataset:
|
1582 |
-
type: mteb/amazon_massive_intent
|
1583 |
-
name: MTEB MassiveIntentClassification (en)
|
1584 |
-
config: en
|
1585 |
-
split: test
|
1586 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1587 |
-
metrics:
|
1588 |
-
- type: accuracy
|
1589 |
-
value: 74.80833893745796
|
1590 |
-
- type: f1
|
1591 |
-
value: 72.70786592684664
|
1592 |
-
- task:
|
1593 |
-
type: Classification
|
1594 |
-
dataset:
|
1595 |
-
type: mteb/amazon_massive_scenario
|
1596 |
-
name: MTEB MassiveScenarioClassification (en)
|
1597 |
-
config: en
|
1598 |
-
split: test
|
1599 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1600 |
-
metrics:
|
1601 |
-
- type: accuracy
|
1602 |
-
value: 78.69872225958305
|
1603 |
-
- type: f1
|
1604 |
-
value: 78.61626934504731
|
1605 |
-
- task:
|
1606 |
-
type: Clustering
|
1607 |
-
dataset:
|
1608 |
-
type: mteb/medrxiv-clustering-p2p
|
1609 |
-
name: MTEB MedrxivClusteringP2P
|
1610 |
-
config: default
|
1611 |
-
split: test
|
1612 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1613 |
-
metrics:
|
1614 |
-
- type: v_measure
|
1615 |
-
value: 33.058658628717694
|
1616 |
-
- task:
|
1617 |
-
type: Clustering
|
1618 |
-
dataset:
|
1619 |
-
type: mteb/medrxiv-clustering-s2s
|
1620 |
-
name: MTEB MedrxivClusteringS2S
|
1621 |
-
config: default
|
1622 |
-
split: test
|
1623 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1624 |
-
metrics:
|
1625 |
-
- type: v_measure
|
1626 |
-
value: 30.85561739360599
|
1627 |
-
- task:
|
1628 |
-
type: Reranking
|
1629 |
-
dataset:
|
1630 |
-
type: mteb/mind_small
|
1631 |
-
name: MTEB MindSmallReranking
|
1632 |
-
config: default
|
1633 |
-
split: test
|
1634 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1635 |
-
metrics:
|
1636 |
-
- type: map
|
1637 |
-
value: 31.290259910144385
|
1638 |
-
- type: mrr
|
1639 |
-
value: 32.44223046102856
|
1640 |
-
- task:
|
1641 |
-
type: Retrieval
|
1642 |
-
dataset:
|
1643 |
-
type: nfcorpus
|
1644 |
-
name: MTEB NFCorpus
|
1645 |
-
config: default
|
1646 |
-
split: test
|
1647 |
-
revision: None
|
1648 |
-
metrics:
|
1649 |
-
- type: map_at_1
|
1650 |
-
value: 5.288
|
1651 |
-
- type: map_at_10
|
1652 |
-
value: 12.267999999999999
|
1653 |
-
- type: map_at_100
|
1654 |
-
value: 15.557000000000002
|
1655 |
-
- type: map_at_1000
|
1656 |
-
value: 16.98
|
1657 |
-
- type: map_at_3
|
1658 |
-
value: 8.866
|
1659 |
-
- type: map_at_5
|
1660 |
-
value: 10.418
|
1661 |
-
- type: mrr_at_1
|
1662 |
-
value: 43.653
|
1663 |
-
- type: mrr_at_10
|
1664 |
-
value: 52.681
|
1665 |
-
- type: mrr_at_100
|
1666 |
-
value: 53.315999999999995
|
1667 |
-
- type: mrr_at_1000
|
1668 |
-
value: 53.357
|
1669 |
-
- type: mrr_at_3
|
1670 |
-
value: 51.393
|
1671 |
-
- type: mrr_at_5
|
1672 |
-
value: 51.903999999999996
|
1673 |
-
- type: ndcg_at_1
|
1674 |
-
value: 42.415000000000006
|
1675 |
-
- type: ndcg_at_10
|
1676 |
-
value: 34.305
|
1677 |
-
- type: ndcg_at_100
|
1678 |
-
value: 30.825999999999997
|
1679 |
-
- type: ndcg_at_1000
|
1680 |
-
value: 39.393
|
1681 |
-
- type: ndcg_at_3
|
1682 |
-
value: 39.931
|
1683 |
-
- type: ndcg_at_5
|
1684 |
-
value: 37.519999999999996
|
1685 |
-
- type: precision_at_1
|
1686 |
-
value: 43.653
|
1687 |
-
- type: precision_at_10
|
1688 |
-
value: 25.728
|
1689 |
-
- type: precision_at_100
|
1690 |
-
value: 7.932
|
1691 |
-
- type: precision_at_1000
|
1692 |
-
value: 2.07
|
1693 |
-
- type: precision_at_3
|
1694 |
-
value: 38.184000000000005
|
1695 |
-
- type: precision_at_5
|
1696 |
-
value: 32.879000000000005
|
1697 |
-
- type: recall_at_1
|
1698 |
-
value: 5.288
|
1699 |
-
- type: recall_at_10
|
1700 |
-
value: 16.195
|
1701 |
-
- type: recall_at_100
|
1702 |
-
value: 31.135
|
1703 |
-
- type: recall_at_1000
|
1704 |
-
value: 61.531000000000006
|
1705 |
-
- type: recall_at_3
|
1706 |
-
value: 10.313
|
1707 |
-
- type: recall_at_5
|
1708 |
-
value: 12.754999999999999
|
1709 |
-
- task:
|
1710 |
-
type: Retrieval
|
1711 |
-
dataset:
|
1712 |
-
type: nq
|
1713 |
-
name: MTEB NQ
|
1714 |
-
config: default
|
1715 |
-
split: test
|
1716 |
-
revision: None
|
1717 |
-
metrics:
|
1718 |
-
- type: map_at_1
|
1719 |
-
value: 28.216
|
1720 |
-
- type: map_at_10
|
1721 |
-
value: 42.588
|
1722 |
-
- type: map_at_100
|
1723 |
-
value: 43.702999999999996
|
1724 |
-
- type: map_at_1000
|
1725 |
-
value: 43.739
|
1726 |
-
- type: map_at_3
|
1727 |
-
value: 38.177
|
1728 |
-
- type: map_at_5
|
1729 |
-
value: 40.754000000000005
|
1730 |
-
- type: mrr_at_1
|
1731 |
-
value: 31.866
|
1732 |
-
- type: mrr_at_10
|
1733 |
-
value: 45.189
|
1734 |
-
- type: mrr_at_100
|
1735 |
-
value: 46.056000000000004
|
1736 |
-
- type: mrr_at_1000
|
1737 |
-
value: 46.081
|
1738 |
-
- type: mrr_at_3
|
1739 |
-
value: 41.526999999999994
|
1740 |
-
- type: mrr_at_5
|
1741 |
-
value: 43.704
|
1742 |
-
- type: ndcg_at_1
|
1743 |
-
value: 31.837
|
1744 |
-
- type: ndcg_at_10
|
1745 |
-
value: 50.178
|
1746 |
-
- type: ndcg_at_100
|
1747 |
-
value: 54.98800000000001
|
1748 |
-
- type: ndcg_at_1000
|
1749 |
-
value: 55.812
|
1750 |
-
- type: ndcg_at_3
|
1751 |
-
value: 41.853
|
1752 |
-
- type: ndcg_at_5
|
1753 |
-
value: 46.153
|
1754 |
-
- type: precision_at_1
|
1755 |
-
value: 31.837
|
1756 |
-
- type: precision_at_10
|
1757 |
-
value: 8.43
|
1758 |
-
- type: precision_at_100
|
1759 |
-
value: 1.1119999999999999
|
1760 |
-
- type: precision_at_1000
|
1761 |
-
value: 0.11900000000000001
|
1762 |
-
- type: precision_at_3
|
1763 |
-
value: 19.023
|
1764 |
-
- type: precision_at_5
|
1765 |
-
value: 13.911000000000001
|
1766 |
-
- type: recall_at_1
|
1767 |
-
value: 28.216
|
1768 |
-
- type: recall_at_10
|
1769 |
-
value: 70.8
|
1770 |
-
- type: recall_at_100
|
1771 |
-
value: 91.857
|
1772 |
-
- type: recall_at_1000
|
1773 |
-
value: 97.941
|
1774 |
-
- type: recall_at_3
|
1775 |
-
value: 49.196
|
1776 |
-
- type: recall_at_5
|
1777 |
-
value: 59.072
|
1778 |
-
- task:
|
1779 |
-
type: Retrieval
|
1780 |
-
dataset:
|
1781 |
-
type: quora
|
1782 |
-
name: MTEB QuoraRetrieval
|
1783 |
-
config: default
|
1784 |
-
split: test
|
1785 |
-
revision: None
|
1786 |
-
metrics:
|
1787 |
-
- type: map_at_1
|
1788 |
-
value: 71.22800000000001
|
1789 |
-
- type: map_at_10
|
1790 |
-
value: 85.115
|
1791 |
-
- type: map_at_100
|
1792 |
-
value: 85.72
|
1793 |
-
- type: map_at_1000
|
1794 |
-
value: 85.737
|
1795 |
-
- type: map_at_3
|
1796 |
-
value: 82.149
|
1797 |
-
- type: map_at_5
|
1798 |
-
value: 84.029
|
1799 |
-
- type: mrr_at_1
|
1800 |
-
value: 81.96
|
1801 |
-
- type: mrr_at_10
|
1802 |
-
value: 88.00200000000001
|
1803 |
-
- type: mrr_at_100
|
1804 |
-
value: 88.088
|
1805 |
-
- type: mrr_at_1000
|
1806 |
-
value: 88.089
|
1807 |
-
- type: mrr_at_3
|
1808 |
-
value: 87.055
|
1809 |
-
- type: mrr_at_5
|
1810 |
-
value: 87.715
|
1811 |
-
- type: ndcg_at_1
|
1812 |
-
value: 82.01
|
1813 |
-
- type: ndcg_at_10
|
1814 |
-
value: 88.78
|
1815 |
-
- type: ndcg_at_100
|
1816 |
-
value: 89.91
|
1817 |
-
- type: ndcg_at_1000
|
1818 |
-
value: 90.013
|
1819 |
-
- type: ndcg_at_3
|
1820 |
-
value: 85.957
|
1821 |
-
- type: ndcg_at_5
|
1822 |
-
value: 87.56
|
1823 |
-
- type: precision_at_1
|
1824 |
-
value: 82.01
|
1825 |
-
- type: precision_at_10
|
1826 |
-
value: 13.462
|
1827 |
-
- type: precision_at_100
|
1828 |
-
value: 1.528
|
1829 |
-
- type: precision_at_1000
|
1830 |
-
value: 0.157
|
1831 |
-
- type: precision_at_3
|
1832 |
-
value: 37.553
|
1833 |
-
- type: precision_at_5
|
1834 |
-
value: 24.732000000000003
|
1835 |
-
- type: recall_at_1
|
1836 |
-
value: 71.22800000000001
|
1837 |
-
- type: recall_at_10
|
1838 |
-
value: 95.69
|
1839 |
-
- type: recall_at_100
|
1840 |
-
value: 99.531
|
1841 |
-
- type: recall_at_1000
|
1842 |
-
value: 99.98
|
1843 |
-
- type: recall_at_3
|
1844 |
-
value: 87.632
|
1845 |
-
- type: recall_at_5
|
1846 |
-
value: 92.117
|
1847 |
-
- task:
|
1848 |
-
type: Clustering
|
1849 |
-
dataset:
|
1850 |
-
type: mteb/reddit-clustering
|
1851 |
-
name: MTEB RedditClustering
|
1852 |
-
config: default
|
1853 |
-
split: test
|
1854 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1855 |
-
metrics:
|
1856 |
-
- type: v_measure
|
1857 |
-
value: 52.31768034366916
|
1858 |
-
- task:
|
1859 |
-
type: Clustering
|
1860 |
-
dataset:
|
1861 |
-
type: mteb/reddit-clustering-p2p
|
1862 |
-
name: MTEB RedditClusteringP2P
|
1863 |
-
config: default
|
1864 |
-
split: test
|
1865 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1866 |
-
metrics:
|
1867 |
-
- type: v_measure
|
1868 |
-
value: 60.640266772723606
|
1869 |
-
- task:
|
1870 |
-
type: Retrieval
|
1871 |
-
dataset:
|
1872 |
-
type: scidocs
|
1873 |
-
name: MTEB SCIDOCS
|
1874 |
-
config: default
|
1875 |
-
split: test
|
1876 |
-
revision: None
|
1877 |
-
metrics:
|
1878 |
-
- type: map_at_1
|
1879 |
-
value: 4.7780000000000005
|
1880 |
-
- type: map_at_10
|
1881 |
-
value: 12.299
|
1882 |
-
- type: map_at_100
|
1883 |
-
value: 14.363000000000001
|
1884 |
-
- type: map_at_1000
|
1885 |
-
value: 14.71
|
1886 |
-
- type: map_at_3
|
1887 |
-
value: 8.738999999999999
|
1888 |
-
- type: map_at_5
|
1889 |
-
value: 10.397
|
1890 |
-
- type: mrr_at_1
|
1891 |
-
value: 23.599999999999998
|
1892 |
-
- type: mrr_at_10
|
1893 |
-
value: 34.845
|
1894 |
-
- type: mrr_at_100
|
1895 |
-
value: 35.916
|
1896 |
-
- type: mrr_at_1000
|
1897 |
-
value: 35.973
|
1898 |
-
- type: mrr_at_3
|
1899 |
-
value: 31.7
|
1900 |
-
- type: mrr_at_5
|
1901 |
-
value: 33.535
|
1902 |
-
- type: ndcg_at_1
|
1903 |
-
value: 23.599999999999998
|
1904 |
-
- type: ndcg_at_10
|
1905 |
-
value: 20.522000000000002
|
1906 |
-
- type: ndcg_at_100
|
1907 |
-
value: 28.737000000000002
|
1908 |
-
- type: ndcg_at_1000
|
1909 |
-
value: 34.596
|
1910 |
-
- type: ndcg_at_3
|
1911 |
-
value: 19.542
|
1912 |
-
- type: ndcg_at_5
|
1913 |
-
value: 16.958000000000002
|
1914 |
-
- type: precision_at_1
|
1915 |
-
value: 23.599999999999998
|
1916 |
-
- type: precision_at_10
|
1917 |
-
value: 10.67
|
1918 |
-
- type: precision_at_100
|
1919 |
-
value: 2.259
|
1920 |
-
- type: precision_at_1000
|
1921 |
-
value: 0.367
|
1922 |
-
- type: precision_at_3
|
1923 |
-
value: 18.333
|
1924 |
-
- type: precision_at_5
|
1925 |
-
value: 14.879999999999999
|
1926 |
-
- type: recall_at_1
|
1927 |
-
value: 4.7780000000000005
|
1928 |
-
- type: recall_at_10
|
1929 |
-
value: 21.617
|
1930 |
-
- type: recall_at_100
|
1931 |
-
value: 45.905
|
1932 |
-
- type: recall_at_1000
|
1933 |
-
value: 74.42
|
1934 |
-
- type: recall_at_3
|
1935 |
-
value: 11.148
|
1936 |
-
- type: recall_at_5
|
1937 |
-
value: 15.082999999999998
|
1938 |
-
- task:
|
1939 |
-
type: STS
|
1940 |
-
dataset:
|
1941 |
-
type: mteb/sickr-sts
|
1942 |
-
name: MTEB SICK-R
|
1943 |
-
config: default
|
1944 |
-
split: test
|
1945 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1946 |
-
metrics:
|
1947 |
-
- type: cos_sim_pearson
|
1948 |
-
value: 83.22372750297885
|
1949 |
-
- type: cos_sim_spearman
|
1950 |
-
value: 79.40972617119405
|
1951 |
-
- type: euclidean_pearson
|
1952 |
-
value: 80.6101072020434
|
1953 |
-
- type: euclidean_spearman
|
1954 |
-
value: 79.53844217225202
|
1955 |
-
- type: manhattan_pearson
|
1956 |
-
value: 80.57265975286111
|
1957 |
-
- type: manhattan_spearman
|
1958 |
-
value: 79.46335611792958
|
1959 |
-
- task:
|
1960 |
-
type: STS
|
1961 |
-
dataset:
|
1962 |
-
type: mteb/sts12-sts
|
1963 |
-
name: MTEB STS12
|
1964 |
-
config: default
|
1965 |
-
split: test
|
1966 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1967 |
-
metrics:
|
1968 |
-
- type: cos_sim_pearson
|
1969 |
-
value: 85.43713315520749
|
1970 |
-
- type: cos_sim_spearman
|
1971 |
-
value: 77.44128693329532
|
1972 |
-
- type: euclidean_pearson
|
1973 |
-
value: 81.63869928101123
|
1974 |
-
- type: euclidean_spearman
|
1975 |
-
value: 77.29512977961515
|
1976 |
-
- type: manhattan_pearson
|
1977 |
-
value: 81.63704185566183
|
1978 |
-
- type: manhattan_spearman
|
1979 |
-
value: 77.29909412738657
|
1980 |
-
- task:
|
1981 |
-
type: STS
|
1982 |
-
dataset:
|
1983 |
-
type: mteb/sts13-sts
|
1984 |
-
name: MTEB STS13
|
1985 |
-
config: default
|
1986 |
-
split: test
|
1987 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1988 |
-
metrics:
|
1989 |
-
- type: cos_sim_pearson
|
1990 |
-
value: 81.59451537860527
|
1991 |
-
- type: cos_sim_spearman
|
1992 |
-
value: 82.97994638856723
|
1993 |
-
- type: euclidean_pearson
|
1994 |
-
value: 82.89478688288412
|
1995 |
-
- type: euclidean_spearman
|
1996 |
-
value: 83.58740751053104
|
1997 |
-
- type: manhattan_pearson
|
1998 |
-
value: 82.69140840941608
|
1999 |
-
- type: manhattan_spearman
|
2000 |
-
value: 83.33665956040555
|
2001 |
-
- task:
|
2002 |
-
type: STS
|
2003 |
-
dataset:
|
2004 |
-
type: mteb/sts14-sts
|
2005 |
-
name: MTEB STS14
|
2006 |
-
config: default
|
2007 |
-
split: test
|
2008 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2009 |
-
metrics:
|
2010 |
-
- type: cos_sim_pearson
|
2011 |
-
value: 82.00756527711764
|
2012 |
-
- type: cos_sim_spearman
|
2013 |
-
value: 81.83560996841379
|
2014 |
-
- type: euclidean_pearson
|
2015 |
-
value: 82.07684151976518
|
2016 |
-
- type: euclidean_spearman
|
2017 |
-
value: 82.00913052060511
|
2018 |
-
- type: manhattan_pearson
|
2019 |
-
value: 82.05690778488794
|
2020 |
-
- type: manhattan_spearman
|
2021 |
-
value: 82.02260252019525
|
2022 |
-
- task:
|
2023 |
-
type: STS
|
2024 |
-
dataset:
|
2025 |
-
type: mteb/sts15-sts
|
2026 |
-
name: MTEB STS15
|
2027 |
-
config: default
|
2028 |
-
split: test
|
2029 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2030 |
-
metrics:
|
2031 |
-
- type: cos_sim_pearson
|
2032 |
-
value: 86.13710262895447
|
2033 |
-
- type: cos_sim_spearman
|
2034 |
-
value: 87.26412811156248
|
2035 |
-
- type: euclidean_pearson
|
2036 |
-
value: 86.94151453230228
|
2037 |
-
- type: euclidean_spearman
|
2038 |
-
value: 87.5363796699571
|
2039 |
-
- type: manhattan_pearson
|
2040 |
-
value: 86.86989424083748
|
2041 |
-
- type: manhattan_spearman
|
2042 |
-
value: 87.47315940781353
|
2043 |
-
- task:
|
2044 |
-
type: STS
|
2045 |
-
dataset:
|
2046 |
-
type: mteb/sts16-sts
|
2047 |
-
name: MTEB STS16
|
2048 |
-
config: default
|
2049 |
-
split: test
|
2050 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2051 |
-
metrics:
|
2052 |
-
- type: cos_sim_pearson
|
2053 |
-
value: 83.0230597603627
|
2054 |
-
- type: cos_sim_spearman
|
2055 |
-
value: 84.93344499318864
|
2056 |
-
- type: euclidean_pearson
|
2057 |
-
value: 84.23754743431141
|
2058 |
-
- type: euclidean_spearman
|
2059 |
-
value: 85.09707376597099
|
2060 |
-
- type: manhattan_pearson
|
2061 |
-
value: 84.04325160987763
|
2062 |
-
- type: manhattan_spearman
|
2063 |
-
value: 84.89353071339909
|
2064 |
-
- task:
|
2065 |
-
type: STS
|
2066 |
-
dataset:
|
2067 |
-
type: mteb/sts17-crosslingual-sts
|
2068 |
-
name: MTEB STS17 (en-en)
|
2069 |
-
config: en-en
|
2070 |
-
split: test
|
2071 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2072 |
-
metrics:
|
2073 |
-
- type: cos_sim_pearson
|
2074 |
-
value: 86.75620824563921
|
2075 |
-
- type: cos_sim_spearman
|
2076 |
-
value: 87.15065513706398
|
2077 |
-
- type: euclidean_pearson
|
2078 |
-
value: 88.26281533633521
|
2079 |
-
- type: euclidean_spearman
|
2080 |
-
value: 87.51963738643983
|
2081 |
-
- type: manhattan_pearson
|
2082 |
-
value: 88.25599267618065
|
2083 |
-
- type: manhattan_spearman
|
2084 |
-
value: 87.58048736047483
|
2085 |
-
- task:
|
2086 |
-
type: STS
|
2087 |
-
dataset:
|
2088 |
-
type: mteb/sts22-crosslingual-sts
|
2089 |
-
name: MTEB STS22 (en)
|
2090 |
-
config: en
|
2091 |
-
split: test
|
2092 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2093 |
-
metrics:
|
2094 |
-
- type: cos_sim_pearson
|
2095 |
-
value: 64.74645319195137
|
2096 |
-
- type: cos_sim_spearman
|
2097 |
-
value: 65.29996325037214
|
2098 |
-
- type: euclidean_pearson
|
2099 |
-
value: 67.04297794086443
|
2100 |
-
- type: euclidean_spearman
|
2101 |
-
value: 65.43841726694343
|
2102 |
-
- type: manhattan_pearson
|
2103 |
-
value: 67.39459955690904
|
2104 |
-
- type: manhattan_spearman
|
2105 |
-
value: 65.92864704413651
|
2106 |
-
- task:
|
2107 |
-
type: STS
|
2108 |
-
dataset:
|
2109 |
-
type: mteb/stsbenchmark-sts
|
2110 |
-
name: MTEB STSBenchmark
|
2111 |
-
config: default
|
2112 |
-
split: test
|
2113 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2114 |
-
metrics:
|
2115 |
-
- type: cos_sim_pearson
|
2116 |
-
value: 84.31291020270801
|
2117 |
-
- type: cos_sim_spearman
|
2118 |
-
value: 85.86473738688068
|
2119 |
-
- type: euclidean_pearson
|
2120 |
-
value: 85.65537275064152
|
2121 |
-
- type: euclidean_spearman
|
2122 |
-
value: 86.13087454209642
|
2123 |
-
- type: manhattan_pearson
|
2124 |
-
value: 85.43946955047609
|
2125 |
-
- type: manhattan_spearman
|
2126 |
-
value: 85.91568175344916
|
2127 |
-
- task:
|
2128 |
-
type: Reranking
|
2129 |
-
dataset:
|
2130 |
-
type: mteb/scidocs-reranking
|
2131 |
-
name: MTEB SciDocsRR
|
2132 |
-
config: default
|
2133 |
-
split: test
|
2134 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2135 |
-
metrics:
|
2136 |
-
- type: map
|
2137 |
-
value: 85.93798118350695
|
2138 |
-
- type: mrr
|
2139 |
-
value: 95.93536274908824
|
2140 |
-
- task:
|
2141 |
-
type: Retrieval
|
2142 |
-
dataset:
|
2143 |
-
type: scifact
|
2144 |
-
name: MTEB SciFact
|
2145 |
-
config: default
|
2146 |
-
split: test
|
2147 |
-
revision: None
|
2148 |
-
metrics:
|
2149 |
-
- type: map_at_1
|
2150 |
-
value: 57.594
|
2151 |
-
- type: map_at_10
|
2152 |
-
value: 66.81899999999999
|
2153 |
-
- type: map_at_100
|
2154 |
-
value: 67.368
|
2155 |
-
- type: map_at_1000
|
2156 |
-
value: 67.4
|
2157 |
-
- type: map_at_3
|
2158 |
-
value: 64.061
|
2159 |
-
- type: map_at_5
|
2160 |
-
value: 65.47
|
2161 |
-
- type: mrr_at_1
|
2162 |
-
value: 60.667
|
2163 |
-
- type: mrr_at_10
|
2164 |
-
value: 68.219
|
2165 |
-
- type: mrr_at_100
|
2166 |
-
value: 68.655
|
2167 |
-
- type: mrr_at_1000
|
2168 |
-
value: 68.684
|
2169 |
-
- type: mrr_at_3
|
2170 |
-
value: 66.22200000000001
|
2171 |
-
- type: mrr_at_5
|
2172 |
-
value: 67.289
|
2173 |
-
- type: ndcg_at_1
|
2174 |
-
value: 60.667
|
2175 |
-
- type: ndcg_at_10
|
2176 |
-
value: 71.275
|
2177 |
-
- type: ndcg_at_100
|
2178 |
-
value: 73.642
|
2179 |
-
- type: ndcg_at_1000
|
2180 |
-
value: 74.373
|
2181 |
-
- type: ndcg_at_3
|
2182 |
-
value: 66.521
|
2183 |
-
- type: ndcg_at_5
|
2184 |
-
value: 68.581
|
2185 |
-
- type: precision_at_1
|
2186 |
-
value: 60.667
|
2187 |
-
- type: precision_at_10
|
2188 |
-
value: 9.433
|
2189 |
-
- type: precision_at_100
|
2190 |
-
value: 1.0699999999999998
|
2191 |
-
- type: precision_at_1000
|
2192 |
-
value: 0.11299999999999999
|
2193 |
-
- type: precision_at_3
|
2194 |
-
value: 25.556
|
2195 |
-
- type: precision_at_5
|
2196 |
-
value: 16.8
|
2197 |
-
- type: recall_at_1
|
2198 |
-
value: 57.594
|
2199 |
-
- type: recall_at_10
|
2200 |
-
value: 83.622
|
2201 |
-
- type: recall_at_100
|
2202 |
-
value: 94.167
|
2203 |
-
- type: recall_at_1000
|
2204 |
-
value: 99.667
|
2205 |
-
- type: recall_at_3
|
2206 |
-
value: 70.64399999999999
|
2207 |
-
- type: recall_at_5
|
2208 |
-
value: 75.983
|
2209 |
-
- task:
|
2210 |
-
type: PairClassification
|
2211 |
-
dataset:
|
2212 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
2213 |
-
name: MTEB SprintDuplicateQuestions
|
2214 |
-
config: default
|
2215 |
-
split: test
|
2216 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2217 |
-
metrics:
|
2218 |
-
- type: cos_sim_accuracy
|
2219 |
-
value: 99.85841584158416
|
2220 |
-
- type: cos_sim_ap
|
2221 |
-
value: 96.66996142314342
|
2222 |
-
- type: cos_sim_f1
|
2223 |
-
value: 92.83208020050125
|
2224 |
-
- type: cos_sim_precision
|
2225 |
-
value: 93.06532663316584
|
2226 |
-
- type: cos_sim_recall
|
2227 |
-
value: 92.60000000000001
|
2228 |
-
- type: dot_accuracy
|
2229 |
-
value: 99.85841584158416
|
2230 |
-
- type: dot_ap
|
2231 |
-
value: 96.6775307676576
|
2232 |
-
- type: dot_f1
|
2233 |
-
value: 92.69289729177312
|
2234 |
-
- type: dot_precision
|
2235 |
-
value: 94.77533960292581
|
2236 |
-
- type: dot_recall
|
2237 |
-
value: 90.7
|
2238 |
-
- type: euclidean_accuracy
|
2239 |
-
value: 99.86138613861387
|
2240 |
-
- type: euclidean_ap
|
2241 |
-
value: 96.6338454403108
|
2242 |
-
- type: euclidean_f1
|
2243 |
-
value: 92.92214357937311
|
2244 |
-
- type: euclidean_precision
|
2245 |
-
value: 93.96728016359918
|
2246 |
-
- type: euclidean_recall
|
2247 |
-
value: 91.9
|
2248 |
-
- type: manhattan_accuracy
|
2249 |
-
value: 99.86237623762376
|
2250 |
-
- type: manhattan_ap
|
2251 |
-
value: 96.60370449645053
|
2252 |
-
- type: manhattan_f1
|
2253 |
-
value: 92.91177970423253
|
2254 |
-
- type: manhattan_precision
|
2255 |
-
value: 94.7970863683663
|
2256 |
-
- type: manhattan_recall
|
2257 |
-
value: 91.10000000000001
|
2258 |
-
- type: max_accuracy
|
2259 |
-
value: 99.86237623762376
|
2260 |
-
- type: max_ap
|
2261 |
-
value: 96.6775307676576
|
2262 |
-
- type: max_f1
|
2263 |
-
value: 92.92214357937311
|
2264 |
-
- task:
|
2265 |
-
type: Clustering
|
2266 |
-
dataset:
|
2267 |
-
type: mteb/stackexchange-clustering
|
2268 |
-
name: MTEB StackExchangeClustering
|
2269 |
-
config: default
|
2270 |
-
split: test
|
2271 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2272 |
-
metrics:
|
2273 |
-
- type: v_measure
|
2274 |
-
value: 60.77977058695198
|
2275 |
-
- task:
|
2276 |
-
type: Clustering
|
2277 |
-
dataset:
|
2278 |
-
type: mteb/stackexchange-clustering-p2p
|
2279 |
-
name: MTEB StackExchangeClusteringP2P
|
2280 |
-
config: default
|
2281 |
-
split: test
|
2282 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2283 |
-
metrics:
|
2284 |
-
- type: v_measure
|
2285 |
-
value: 35.2725272535638
|
2286 |
-
- task:
|
2287 |
-
type: Reranking
|
2288 |
-
dataset:
|
2289 |
-
type: mteb/stackoverflowdupquestions-reranking
|
2290 |
-
name: MTEB StackOverflowDupQuestions
|
2291 |
-
config: default
|
2292 |
-
split: test
|
2293 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2294 |
-
metrics:
|
2295 |
-
- type: map
|
2296 |
-
value: 53.64052466362125
|
2297 |
-
- type: mrr
|
2298 |
-
value: 54.533067014684654
|
2299 |
-
- task:
|
2300 |
-
type: Summarization
|
2301 |
-
dataset:
|
2302 |
-
type: mteb/summeval
|
2303 |
-
name: MTEB SummEval
|
2304 |
-
config: default
|
2305 |
-
split: test
|
2306 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2307 |
-
metrics:
|
2308 |
-
- type: cos_sim_pearson
|
2309 |
-
value: 30.677624219206578
|
2310 |
-
- type: cos_sim_spearman
|
2311 |
-
value: 30.121368518123447
|
2312 |
-
- type: dot_pearson
|
2313 |
-
value: 30.69870088041608
|
2314 |
-
- type: dot_spearman
|
2315 |
-
value: 29.61284927093751
|
2316 |
-
- task:
|
2317 |
-
type: Retrieval
|
2318 |
-
dataset:
|
2319 |
-
type: trec-covid
|
2320 |
-
name: MTEB TRECCOVID
|
2321 |
-
config: default
|
2322 |
-
split: test
|
2323 |
-
revision: None
|
2324 |
-
metrics:
|
2325 |
-
- type: map_at_1
|
2326 |
-
value: 0.22
|
2327 |
-
- type: map_at_10
|
2328 |
-
value: 1.855
|
2329 |
-
- type: map_at_100
|
2330 |
-
value: 9.885
|
2331 |
-
- type: map_at_1000
|
2332 |
-
value: 23.416999999999998
|
2333 |
-
- type: map_at_3
|
2334 |
-
value: 0.637
|
2335 |
-
- type: map_at_5
|
2336 |
-
value: 1.024
|
2337 |
-
- type: mrr_at_1
|
2338 |
-
value: 88.0
|
2339 |
-
- type: mrr_at_10
|
2340 |
-
value: 93.067
|
2341 |
-
- type: mrr_at_100
|
2342 |
-
value: 93.067
|
2343 |
-
- type: mrr_at_1000
|
2344 |
-
value: 93.067
|
2345 |
-
- type: mrr_at_3
|
2346 |
-
value: 92.667
|
2347 |
-
- type: mrr_at_5
|
2348 |
-
value: 93.067
|
2349 |
-
- type: ndcg_at_1
|
2350 |
-
value: 82.0
|
2351 |
-
- type: ndcg_at_10
|
2352 |
-
value: 75.899
|
2353 |
-
- type: ndcg_at_100
|
2354 |
-
value: 55.115
|
2355 |
-
- type: ndcg_at_1000
|
2356 |
-
value: 48.368
|
2357 |
-
- type: ndcg_at_3
|
2358 |
-
value: 79.704
|
2359 |
-
- type: ndcg_at_5
|
2360 |
-
value: 78.39699999999999
|
2361 |
-
- type: precision_at_1
|
2362 |
-
value: 88.0
|
2363 |
-
- type: precision_at_10
|
2364 |
-
value: 79.60000000000001
|
2365 |
-
- type: precision_at_100
|
2366 |
-
value: 56.06
|
2367 |
-
- type: precision_at_1000
|
2368 |
-
value: 21.206
|
2369 |
-
- type: precision_at_3
|
2370 |
-
value: 84.667
|
2371 |
-
- type: precision_at_5
|
2372 |
-
value: 83.2
|
2373 |
-
- type: recall_at_1
|
2374 |
-
value: 0.22
|
2375 |
-
- type: recall_at_10
|
2376 |
-
value: 2.078
|
2377 |
-
- type: recall_at_100
|
2378 |
-
value: 13.297
|
2379 |
-
- type: recall_at_1000
|
2380 |
-
value: 44.979
|
2381 |
-
- type: recall_at_3
|
2382 |
-
value: 0.6689999999999999
|
2383 |
-
- type: recall_at_5
|
2384 |
-
value: 1.106
|
2385 |
-
- task:
|
2386 |
-
type: Retrieval
|
2387 |
-
dataset:
|
2388 |
-
type: webis-touche2020
|
2389 |
-
name: MTEB Touche2020
|
2390 |
-
config: default
|
2391 |
-
split: test
|
2392 |
-
revision: None
|
2393 |
-
metrics:
|
2394 |
-
- type: map_at_1
|
2395 |
-
value: 2.258
|
2396 |
-
- type: map_at_10
|
2397 |
-
value: 10.439
|
2398 |
-
- type: map_at_100
|
2399 |
-
value: 16.89
|
2400 |
-
- type: map_at_1000
|
2401 |
-
value: 18.407999999999998
|
2402 |
-
- type: map_at_3
|
2403 |
-
value: 5.668
|
2404 |
-
- type: map_at_5
|
2405 |
-
value: 7.718
|
2406 |
-
- type: mrr_at_1
|
2407 |
-
value: 32.653
|
2408 |
-
- type: mrr_at_10
|
2409 |
-
value: 51.159
|
2410 |
-
- type: mrr_at_100
|
2411 |
-
value: 51.714000000000006
|
2412 |
-
- type: mrr_at_1000
|
2413 |
-
value: 51.714000000000006
|
2414 |
-
- type: mrr_at_3
|
2415 |
-
value: 47.959
|
2416 |
-
- type: mrr_at_5
|
2417 |
-
value: 50.407999999999994
|
2418 |
-
- type: ndcg_at_1
|
2419 |
-
value: 29.592000000000002
|
2420 |
-
- type: ndcg_at_10
|
2421 |
-
value: 26.037
|
2422 |
-
- type: ndcg_at_100
|
2423 |
-
value: 37.924
|
2424 |
-
- type: ndcg_at_1000
|
2425 |
-
value: 49.126999999999995
|
2426 |
-
- type: ndcg_at_3
|
2427 |
-
value: 30.631999999999998
|
2428 |
-
- type: ndcg_at_5
|
2429 |
-
value: 28.571
|
2430 |
-
- type: precision_at_1
|
2431 |
-
value: 32.653
|
2432 |
-
- type: precision_at_10
|
2433 |
-
value: 22.857
|
2434 |
-
- type: precision_at_100
|
2435 |
-
value: 7.754999999999999
|
2436 |
-
- type: precision_at_1000
|
2437 |
-
value: 1.529
|
2438 |
-
- type: precision_at_3
|
2439 |
-
value: 34.014
|
2440 |
-
- type: precision_at_5
|
2441 |
-
value: 29.796
|
2442 |
-
- type: recall_at_1
|
2443 |
-
value: 2.258
|
2444 |
-
- type: recall_at_10
|
2445 |
-
value: 16.554
|
2446 |
-
- type: recall_at_100
|
2447 |
-
value: 48.439
|
2448 |
-
- type: recall_at_1000
|
2449 |
-
value: 82.80499999999999
|
2450 |
-
- type: recall_at_3
|
2451 |
-
value: 7.283
|
2452 |
-
- type: recall_at_5
|
2453 |
-
value: 10.732
|
2454 |
-
- task:
|
2455 |
-
type: Classification
|
2456 |
-
dataset:
|
2457 |
-
type: mteb/toxic_conversations_50k
|
2458 |
-
name: MTEB ToxicConversationsClassification
|
2459 |
-
config: default
|
2460 |
-
split: test
|
2461 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2462 |
-
metrics:
|
2463 |
-
- type: accuracy
|
2464 |
-
value: 69.8858
|
2465 |
-
- type: ap
|
2466 |
-
value: 13.835684144362109
|
2467 |
-
- type: f1
|
2468 |
-
value: 53.803351693244586
|
2469 |
-
- task:
|
2470 |
-
type: Classification
|
2471 |
-
dataset:
|
2472 |
-
type: mteb/tweet_sentiment_extraction
|
2473 |
-
name: MTEB TweetSentimentExtractionClassification
|
2474 |
-
config: default
|
2475 |
-
split: test
|
2476 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2477 |
-
metrics:
|
2478 |
-
- type: accuracy
|
2479 |
-
value: 60.50650820599886
|
2480 |
-
- type: f1
|
2481 |
-
value: 60.84357825979259
|
2482 |
-
- task:
|
2483 |
-
type: Clustering
|
2484 |
-
dataset:
|
2485 |
-
type: mteb/twentynewsgroups-clustering
|
2486 |
-
name: MTEB TwentyNewsgroupsClustering
|
2487 |
-
config: default
|
2488 |
-
split: test
|
2489 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2490 |
-
metrics:
|
2491 |
-
- type: v_measure
|
2492 |
-
value: 48.52131044852134
|
2493 |
-
- task:
|
2494 |
-
type: PairClassification
|
2495 |
-
dataset:
|
2496 |
-
type: mteb/twittersemeval2015-pairclassification
|
2497 |
-
name: MTEB TwitterSemEval2015
|
2498 |
-
config: default
|
2499 |
-
split: test
|
2500 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2501 |
-
metrics:
|
2502 |
-
- type: cos_sim_accuracy
|
2503 |
-
value: 85.59337187816654
|
2504 |
-
- type: cos_sim_ap
|
2505 |
-
value: 73.23925826533437
|
2506 |
-
- type: cos_sim_f1
|
2507 |
-
value: 67.34693877551021
|
2508 |
-
- type: cos_sim_precision
|
2509 |
-
value: 62.40432237730752
|
2510 |
-
- type: cos_sim_recall
|
2511 |
-
value: 73.13984168865434
|
2512 |
-
- type: dot_accuracy
|
2513 |
-
value: 85.31322644096085
|
2514 |
-
- type: dot_ap
|
2515 |
-
value: 72.30723963807422
|
2516 |
-
- type: dot_f1
|
2517 |
-
value: 66.47051612112296
|
2518 |
-
- type: dot_precision
|
2519 |
-
value: 62.0792305930845
|
2520 |
-
- type: dot_recall
|
2521 |
-
value: 71.53034300791556
|
2522 |
-
- type: euclidean_accuracy
|
2523 |
-
value: 85.61125350181797
|
2524 |
-
- type: euclidean_ap
|
2525 |
-
value: 73.32843720487845
|
2526 |
-
- type: euclidean_f1
|
2527 |
-
value: 67.36549633745895
|
2528 |
-
- type: euclidean_precision
|
2529 |
-
value: 64.60755813953489
|
2530 |
-
- type: euclidean_recall
|
2531 |
-
value: 70.36939313984169
|
2532 |
-
- type: manhattan_accuracy
|
2533 |
-
value: 85.63509566668654
|
2534 |
-
- type: manhattan_ap
|
2535 |
-
value: 73.16658488311325
|
2536 |
-
- type: manhattan_f1
|
2537 |
-
value: 67.20597386434349
|
2538 |
-
- type: manhattan_precision
|
2539 |
-
value: 63.60424028268551
|
2540 |
-
- type: manhattan_recall
|
2541 |
-
value: 71.2401055408971
|
2542 |
-
- type: max_accuracy
|
2543 |
-
value: 85.63509566668654
|
2544 |
-
- type: max_ap
|
2545 |
-
value: 73.32843720487845
|
2546 |
-
- type: max_f1
|
2547 |
-
value: 67.36549633745895
|
2548 |
-
- task:
|
2549 |
-
type: PairClassification
|
2550 |
-
dataset:
|
2551 |
-
type: mteb/twitterurlcorpus-pairclassification
|
2552 |
-
name: MTEB TwitterURLCorpus
|
2553 |
-
config: default
|
2554 |
-
split: test
|
2555 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2556 |
-
metrics:
|
2557 |
-
- type: cos_sim_accuracy
|
2558 |
-
value: 88.33779640625606
|
2559 |
-
- type: cos_sim_ap
|
2560 |
-
value: 84.83868375898157
|
2561 |
-
- type: cos_sim_f1
|
2562 |
-
value: 77.16506154017773
|
2563 |
-
- type: cos_sim_precision
|
2564 |
-
value: 74.62064005753327
|
2565 |
-
- type: cos_sim_recall
|
2566 |
-
value: 79.88912842623961
|
2567 |
-
- type: dot_accuracy
|
2568 |
-
value: 88.02732176815307
|
2569 |
-
- type: dot_ap
|
2570 |
-
value: 83.95089283763002
|
2571 |
-
- type: dot_f1
|
2572 |
-
value: 76.29635101196631
|
2573 |
-
- type: dot_precision
|
2574 |
-
value: 73.31771720613288
|
2575 |
-
- type: dot_recall
|
2576 |
-
value: 79.52725592854944
|
2577 |
-
- type: euclidean_accuracy
|
2578 |
-
value: 88.44452206310397
|
2579 |
-
- type: euclidean_ap
|
2580 |
-
value: 84.98384576824827
|
2581 |
-
- type: euclidean_f1
|
2582 |
-
value: 77.29311047696697
|
2583 |
-
- type: euclidean_precision
|
2584 |
-
value: 74.51232583065381
|
2585 |
-
- type: euclidean_recall
|
2586 |
-
value: 80.28949799815214
|
2587 |
-
- type: manhattan_accuracy
|
2588 |
-
value: 88.47362906042613
|
2589 |
-
- type: manhattan_ap
|
2590 |
-
value: 84.91421462218432
|
2591 |
-
- type: manhattan_f1
|
2592 |
-
value: 77.05107637204792
|
2593 |
-
- type: manhattan_precision
|
2594 |
-
value: 74.74484256243214
|
2595 |
-
- type: manhattan_recall
|
2596 |
-
value: 79.50415768401602
|
2597 |
-
- type: max_accuracy
|
2598 |
-
value: 88.47362906042613
|
2599 |
-
- type: max_ap
|
2600 |
-
value: 84.98384576824827
|
2601 |
-
- type: max_f1
|
2602 |
-
value: 77.29311047696697
|
2603 |
license: mit
|
2604 |
language:
|
2605 |
- en
|
2606 |
---
|
2607 |
|
2608 |
|
2609 |
-
<h1 align="center">
|
2610 |
|
2611 |
|
2612 |
-
|
2613 |
-
<p>
|
2614 |
-
<a href=#model-list>Model List</a> |
|
2615 |
-
<a href=#frequently-asked-questions>FAQ</a> |
|
2616 |
-
<a href=#usage>Usage</a> |
|
2617 |
-
<a href="#evaluation">Evaluation</a> |
|
2618 |
-
<a href="#train">Train</a> |
|
2619 |
-
<a href="#contact">Contact</a> |
|
2620 |
-
<a href="#citation">Citation</a> |
|
2621 |
-
<a href="#license">License</a>
|
2622 |
-
<p>
|
2623 |
-
</h4>
|
2624 |
|
2625 |
-
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
2626 |
-
|
2627 |
-
If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3).
|
2628 |
-
|
2629 |
-
|
2630 |
-
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
2631 |
-
|
2632 |
-
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
|
2633 |
-
|
2634 |
-
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
2635 |
-
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
2636 |
-
- **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
2637 |
-
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
2638 |
-
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
2639 |
-
|
2640 |
-
## News
|
2641 |
-
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
2642 |
-
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
2643 |
-
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|
2644 |
-
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
|
2645 |
-
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire:
|
2646 |
-
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
|
2647 |
-
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
|
2648 |
-
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
|
2649 |
-
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
|
2650 |
-
- 09/12/2023: New models:
|
2651 |
-
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
|
2652 |
-
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
2653 |
-
|
2654 |
-
|
2655 |
-
<details>
|
2656 |
-
<summary>More</summary>
|
2657 |
-
<!-- ### More -->
|
2658 |
-
|
2659 |
-
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
2660 |
-
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
2661 |
-
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
2662 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
2663 |
-
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
2664 |
-
|
2665 |
-
</details>
|
2666 |
-
|
2667 |
-
|
2668 |
-
## Model List
|
2669 |
-
|
2670 |
-
`bge` is short for `BAAI general embedding`.
|
2671 |
-
|
2672 |
-
| Model | Language | | Description | query instruction for retrieval [1] |
|
2673 |
-
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
2674 |
-
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
|
2675 |
-
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
|
2676 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
2677 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
2678 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
2679 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
2680 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
2681 |
-
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
2682 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
2683 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
2684 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
2685 |
-
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
2686 |
-
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
2687 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
2688 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
2689 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
2690 |
-
|
2691 |
-
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
2692 |
-
|
2693 |
-
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
2694 |
-
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
2695 |
-
|
2696 |
-
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
|
2697 |
-
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
|
2698 |
-
|
2699 |
-
|
2700 |
-
## Frequently asked questions
|
2701 |
-
|
2702 |
-
<details>
|
2703 |
-
<summary>1. How to fine-tune bge embedding model?</summary>
|
2704 |
-
|
2705 |
-
<!-- ### How to fine-tune bge embedding model? -->
|
2706 |
-
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
2707 |
-
Some suggestions:
|
2708 |
-
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
|
2709 |
-
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
2710 |
-
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
2711 |
-
|
2712 |
-
|
2713 |
-
</details>
|
2714 |
-
|
2715 |
-
<details>
|
2716 |
-
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
2717 |
-
|
2718 |
-
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
2719 |
-
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
2720 |
-
|
2721 |
-
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
2722 |
-
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
2723 |
-
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
2724 |
-
|
2725 |
-
For downstream tasks, such as passage retrieval or semantic similarity,
|
2726 |
-
**what matters is the relative order of the scores, not the absolute value.**
|
2727 |
-
If you need to filter similar sentences based on a similarity threshold,
|
2728 |
-
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
2729 |
-
|
2730 |
-
</details>
|
2731 |
-
|
2732 |
-
<details>
|
2733 |
-
<summary>3. When does the query instruction need to be used</summary>
|
2734 |
-
|
2735 |
-
<!-- ### When does the query instruction need to be used -->
|
2736 |
-
|
2737 |
-
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
|
2738 |
-
No instruction only has a slight degradation in retrieval performance compared with using instruction.
|
2739 |
-
So you can generate embedding without instruction in all cases for convenience.
|
2740 |
-
|
2741 |
-
For a retrieval task that uses short queries to find long related documents,
|
2742 |
-
it is recommended to add instructions for these short queries.
|
2743 |
-
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
2744 |
-
In all cases, the documents/passages do not need to add the instruction.
|
2745 |
-
|
2746 |
-
</details>
|
2747 |
|
2748 |
|
2749 |
## Usage
|
2750 |
|
2751 |
-
### Usage for Embedding Model
|
2752 |
-
|
2753 |
-
Here are some examples for using `bge` models with
|
2754 |
-
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
2755 |
-
|
2756 |
-
#### Using FlagEmbedding
|
2757 |
-
```
|
2758 |
-
pip install -U FlagEmbedding
|
2759 |
-
```
|
2760 |
-
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
2761 |
-
|
2762 |
-
```python
|
2763 |
-
from FlagEmbedding import FlagModel
|
2764 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
2765 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
2766 |
-
model = FlagModel('BAAI/bge-large-zh-v1.5',
|
2767 |
-
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
2768 |
-
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
2769 |
-
embeddings_1 = model.encode(sentences_1)
|
2770 |
-
embeddings_2 = model.encode(sentences_2)
|
2771 |
-
similarity = embeddings_1 @ embeddings_2.T
|
2772 |
-
print(similarity)
|
2773 |
-
|
2774 |
-
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
2775 |
-
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
2776 |
-
queries = ['query_1', 'query_2']
|
2777 |
-
passages = ["样例文档-1", "样例文档-2"]
|
2778 |
-
q_embeddings = model.encode_queries(queries)
|
2779 |
-
p_embeddings = model.encode(passages)
|
2780 |
-
scores = q_embeddings @ p_embeddings.T
|
2781 |
-
```
|
2782 |
-
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
2783 |
-
|
2784 |
-
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
2785 |
-
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
2786 |
-
|
2787 |
-
|
2788 |
-
#### Using Sentence-Transformers
|
2789 |
-
|
2790 |
-
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
2791 |
-
|
2792 |
-
```
|
2793 |
-
pip install -U sentence-transformers
|
2794 |
-
```
|
2795 |
-
```python
|
2796 |
-
from sentence_transformers import SentenceTransformer
|
2797 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
2798 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
2799 |
-
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
2800 |
-
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
2801 |
-
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
2802 |
-
similarity = embeddings_1 @ embeddings_2.T
|
2803 |
-
print(similarity)
|
2804 |
-
```
|
2805 |
-
For s2p(short query to long passage) retrieval task,
|
2806 |
-
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
2807 |
-
But the instruction is not needed for passages.
|
2808 |
-
```python
|
2809 |
-
from sentence_transformers import SentenceTransformer
|
2810 |
-
queries = ['query_1', 'query_2']
|
2811 |
-
passages = ["样例文档-1", "样例文档-2"]
|
2812 |
-
instruction = "为这个句子生成表示以用于检索相关文章:"
|
2813 |
-
|
2814 |
-
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
2815 |
-
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
2816 |
-
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
2817 |
-
scores = q_embeddings @ p_embeddings.T
|
2818 |
-
```
|
2819 |
-
|
2820 |
-
#### Using Langchain
|
2821 |
-
|
2822 |
-
You can use `bge` in langchain like this:
|
2823 |
-
```python
|
2824 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
2825 |
-
model_name = "BAAI/bge-large-en-v1.5"
|
2826 |
-
model_kwargs = {'device': 'cuda'}
|
2827 |
-
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
2828 |
-
model = HuggingFaceBgeEmbeddings(
|
2829 |
-
model_name=model_name,
|
2830 |
-
model_kwargs=model_kwargs,
|
2831 |
-
encode_kwargs=encode_kwargs,
|
2832 |
-
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
2833 |
-
)
|
2834 |
-
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
2835 |
-
```
|
2836 |
-
|
2837 |
-
|
2838 |
-
#### Using HuggingFace Transformers
|
2839 |
-
|
2840 |
-
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
2841 |
|
2842 |
-
|
2843 |
-
from transformers import AutoTokenizer, AutoModel
|
2844 |
-
import torch
|
2845 |
-
# Sentences we want sentence embeddings for
|
2846 |
-
sentences = ["样例数据-1", "样例数据-2"]
|
2847 |
-
|
2848 |
-
# Load model from HuggingFace Hub
|
2849 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
|
2850 |
-
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
|
2851 |
-
model.eval()
|
2852 |
-
|
2853 |
-
# Tokenize sentences
|
2854 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2855 |
-
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
2856 |
-
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
2857 |
-
|
2858 |
-
# Compute token embeddings
|
2859 |
-
with torch.no_grad():
|
2860 |
-
model_output = model(**encoded_input)
|
2861 |
-
# Perform pooling. In this case, cls pooling.
|
2862 |
-
sentence_embeddings = model_output[0][:, 0]
|
2863 |
-
# normalize embeddings
|
2864 |
-
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
2865 |
-
print("Sentence embeddings:", sentence_embeddings)
|
2866 |
-
```
|
2867 |
-
|
2868 |
-
### Usage for Reranker
|
2869 |
-
|
2870 |
-
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
|
2871 |
-
You can get a relevance score by inputting query and passage to the reranker.
|
2872 |
-
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
2873 |
-
|
2874 |
-
|
2875 |
-
#### Using FlagEmbedding
|
2876 |
-
```
|
2877 |
-
pip install -U FlagEmbedding
|
2878 |
-
```
|
2879 |
-
|
2880 |
-
Get relevance scores (higher scores indicate more relevance):
|
2881 |
-
```python
|
2882 |
-
from FlagEmbedding import FlagReranker
|
2883 |
-
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
2884 |
-
|
2885 |
-
score = reranker.compute_score(['query', 'passage'])
|
2886 |
-
print(score)
|
2887 |
-
|
2888 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
2889 |
-
print(scores)
|
2890 |
-
```
|
2891 |
-
|
2892 |
-
|
2893 |
-
#### Using Huggingface transformers
|
2894 |
-
|
2895 |
-
```python
|
2896 |
-
import torch
|
2897 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2898 |
-
|
2899 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
2900 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
|
2901 |
-
model.eval()
|
2902 |
-
|
2903 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
2904 |
-
with torch.no_grad():
|
2905 |
-
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
2906 |
-
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
2907 |
-
print(scores)
|
2908 |
-
```
|
2909 |
-
|
2910 |
-
#### Usage of the ONNX files
|
2911 |
-
|
2912 |
-
```python
|
2913 |
-
from optimum.onnxruntime import ORTModelForFeatureExtraction # type: ignore
|
2914 |
-
|
2915 |
-
import torch
|
2916 |
-
from transformers import AutoModel, AutoTokenizer
|
2917 |
-
|
2918 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-en-v1.5')
|
2919 |
-
model = AutoModel.from_pretrained('BAAI/bge-small-en-v1.5')
|
2920 |
-
model_ort = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-small-en-v1.5', file_name="onnx/model.onnx")
|
2921 |
-
|
2922 |
-
# Sentences we want sentence embeddings for
|
2923 |
-
sentences = ["样例数据-1", "样例数据-2"]
|
2924 |
-
|
2925 |
-
# Tokenize sentences
|
2926 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2927 |
-
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
2928 |
-
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
2929 |
-
|
2930 |
-
model_output_ort = model_ort(**encoded_input)
|
2931 |
-
# Compute token embeddings
|
2932 |
-
with torch.no_grad():
|
2933 |
-
model_output = model(**encoded_input)
|
2934 |
-
|
2935 |
-
# model_output and model_output_ort are identical
|
2936 |
-
|
2937 |
-
```
|
2938 |
-
|
2939 |
-
#### Usage via infinity
|
2940 |
-
Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
|
2941 |
Recommended is `device="cuda", engine="torch"` with flash attention on gpu, and `device="cpu", engine="optimum"` for onnx inference.
|
2942 |
|
2943 |
```python
|
@@ -2956,102 +40,9 @@ asyncio.run(main())
|
|
2956 |
```
|
2957 |
|
2958 |
|
2959 |
-
## Evaluation
|
2960 |
-
|
2961 |
-
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
2962 |
-
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
2963 |
-
|
2964 |
-
- **MTEB**:
|
2965 |
-
|
2966 |
-
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
2967 |
-
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2968 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
2969 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
2970 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
2971 |
-
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
2972 |
-
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
2973 |
-
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
2974 |
-
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
2975 |
-
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
2976 |
-
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
2977 |
-
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
2978 |
-
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
2979 |
-
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
2980 |
-
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
2981 |
-
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
2982 |
-
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
2983 |
-
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
2984 |
-
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
2985 |
-
|
2986 |
-
|
2987 |
-
|
2988 |
-
- **C-MTEB**:
|
2989 |
-
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
2990 |
-
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
2991 |
-
|
2992 |
-
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
2993 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
2994 |
-
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
2995 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
2996 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
2997 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
2998 |
-
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
2999 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
3000 |
-
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
3001 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
3002 |
-
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
3003 |
-
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
3004 |
-
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
3005 |
-
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
3006 |
-
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
3007 |
-
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
3008 |
-
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
3009 |
-
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
3010 |
-
|
3011 |
-
|
3012 |
-
- **Reranking**:
|
3013 |
-
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
3014 |
-
|
3015 |
-
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
3016 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
3017 |
-
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
3018 |
-
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
3019 |
-
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
3020 |
-
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
3021 |
-
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
3022 |
-
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
3023 |
-
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
3024 |
-
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
3025 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
3026 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
3027 |
-
|
3028 |
-
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
|
3029 |
-
|
3030 |
-
## Train
|
3031 |
-
|
3032 |
-
### BAAI Embedding
|
3033 |
-
|
3034 |
-
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
|
3035 |
-
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
3036 |
-
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
3037 |
-
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
3038 |
-
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
3039 |
-
|
3040 |
-
|
3041 |
-
|
3042 |
-
### BGE Reranker
|
3043 |
-
|
3044 |
-
Cross-encoder will perform full-attention over the input pair,
|
3045 |
-
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
3046 |
-
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
3047 |
-
We train the cross-encoder on a multilingual pair data,
|
3048 |
-
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
|
3049 |
-
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
3050 |
-
|
3051 |
-
|
3052 |
## Contact
|
3053 |
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
3054 |
-
You also can email
|
3055 |
|
3056 |
|
3057 |
## Citation
|
@@ -3059,16 +50,15 @@ You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac
|
|
3059 |
If you find this repository useful, please consider giving a star :star: and citation
|
3060 |
|
3061 |
```
|
3062 |
-
@
|
3063 |
-
|
3064 |
-
|
3065 |
-
|
3066 |
-
|
3067 |
-
|
3068 |
-
primaryClass={cs.CL}
|
3069 |
}
|
3070 |
```
|
3071 |
|
3072 |
## License
|
3073 |
-
|
3074 |
|
|
|
4 |
- feature-extraction
|
5 |
- sentence-similarity
|
6 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
license: mit
|
8 |
language:
|
9 |
- en
|
10 |
---
|
11 |
|
12 |
|
13 |
+
<h1 align="center">Infinity Embedding Model</h1>
|
14 |
|
15 |
|
16 |
+
More details please refer to the Github: [Infinity](https://github.com/michaelfeil/infinity).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
## Usage
|
21 |
|
22 |
+
### Usage for Embedding Model via infinity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
Its also possible to deploy files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
Recommended is `device="cuda", engine="torch"` with flash attention on gpu, and `device="cpu", engine="optimum"` for onnx inference.
|
26 |
|
27 |
```python
|
|
|
40 |
```
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
## Contact
|
44 |
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
45 |
+
You also can email Michael Feil (infinity at michaelfeil.eu).
|
46 |
|
47 |
|
48 |
## Citation
|
|
|
50 |
If you find this repository useful, please consider giving a star :star: and citation
|
51 |
|
52 |
```
|
53 |
+
@software{Feil_Infinity_2023,
|
54 |
+
author = {Feil, Michael},
|
55 |
+
month = oct,
|
56 |
+
title = {{Infinity - To Embeddings and Beyond}},
|
57 |
+
url = {https://github.com/michaelfeil/infinity},
|
58 |
+
year = {2023}
|
|
|
59 |
}
|
60 |
```
|
61 |
|
62 |
## License
|
63 |
+
Infinity is licensed under the [MIT License](https://github.com/michaelfeil/infinity/blob/master/LICENSE).
|
64 |
|