michaelfeil commited on
Commit
24ac540
1 Parent(s): 25e4e71

Upload intfloat/e5-large ctranslate fp16 weights

Browse files
README.md ADDED
@@ -0,0 +1,2719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - ctranslate2
4
+ - int8
5
+ - float16
6
+ - mteb
7
+ model-index:
8
+ - name: e5-large
9
+ results:
10
+ - task:
11
+ type: Classification
12
+ dataset:
13
+ type: mteb/amazon_counterfactual
14
+ name: MTEB AmazonCounterfactualClassification (en)
15
+ config: en
16
+ split: test
17
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
18
+ metrics:
19
+ - type: accuracy
20
+ value: 77.68656716417911
21
+ - type: ap
22
+ value: 41.336896075573584
23
+ - type: f1
24
+ value: 71.788561468075
25
+ - task:
26
+ type: Classification
27
+ dataset:
28
+ type: mteb/amazon_polarity
29
+ name: MTEB AmazonPolarityClassification
30
+ config: default
31
+ split: test
32
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
33
+ metrics:
34
+ - type: accuracy
35
+ value: 90.04965
36
+ - type: ap
37
+ value: 86.24637009569418
38
+ - type: f1
39
+ value: 90.03896671762645
40
+ - task:
41
+ type: Classification
42
+ dataset:
43
+ type: mteb/amazon_reviews_multi
44
+ name: MTEB AmazonReviewsClassification (en)
45
+ config: en
46
+ split: test
47
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
48
+ metrics:
49
+ - type: accuracy
50
+ value: 43.016000000000005
51
+ - type: f1
52
+ value: 42.1942431880186
53
+ - task:
54
+ type: Retrieval
55
+ dataset:
56
+ type: arguana
57
+ name: MTEB ArguAna
58
+ config: default
59
+ split: test
60
+ revision: None
61
+ metrics:
62
+ - type: map_at_1
63
+ value: 25.107000000000003
64
+ - type: map_at_10
65
+ value: 40.464
66
+ - type: map_at_100
67
+ value: 41.577999999999996
68
+ - type: map_at_1000
69
+ value: 41.588
70
+ - type: map_at_3
71
+ value: 35.301
72
+ - type: map_at_5
73
+ value: 38.263000000000005
74
+ - type: mrr_at_1
75
+ value: 25.605
76
+ - type: mrr_at_10
77
+ value: 40.64
78
+ - type: mrr_at_100
79
+ value: 41.760000000000005
80
+ - type: mrr_at_1000
81
+ value: 41.77
82
+ - type: mrr_at_3
83
+ value: 35.443000000000005
84
+ - type: mrr_at_5
85
+ value: 38.448
86
+ - type: ndcg_at_1
87
+ value: 25.107000000000003
88
+ - type: ndcg_at_10
89
+ value: 49.352000000000004
90
+ - type: ndcg_at_100
91
+ value: 53.98500000000001
92
+ - type: ndcg_at_1000
93
+ value: 54.208
94
+ - type: ndcg_at_3
95
+ value: 38.671
96
+ - type: ndcg_at_5
97
+ value: 43.991
98
+ - type: precision_at_1
99
+ value: 25.107000000000003
100
+ - type: precision_at_10
101
+ value: 7.795000000000001
102
+ - type: precision_at_100
103
+ value: 0.979
104
+ - type: precision_at_1000
105
+ value: 0.1
106
+ - type: precision_at_3
107
+ value: 16.145
108
+ - type: precision_at_5
109
+ value: 12.262
110
+ - type: recall_at_1
111
+ value: 25.107000000000003
112
+ - type: recall_at_10
113
+ value: 77.952
114
+ - type: recall_at_100
115
+ value: 97.866
116
+ - type: recall_at_1000
117
+ value: 99.57300000000001
118
+ - type: recall_at_3
119
+ value: 48.435
120
+ - type: recall_at_5
121
+ value: 61.309000000000005
122
+ - task:
123
+ type: Clustering
124
+ dataset:
125
+ type: mteb/arxiv-clustering-p2p
126
+ name: MTEB ArxivClusteringP2P
127
+ config: default
128
+ split: test
129
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
130
+ metrics:
131
+ - type: v_measure
132
+ value: 46.19278045044154
133
+ - task:
134
+ type: Clustering
135
+ dataset:
136
+ type: mteb/arxiv-clustering-s2s
137
+ name: MTEB ArxivClusteringS2S
138
+ config: default
139
+ split: test
140
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
141
+ metrics:
142
+ - type: v_measure
143
+ value: 41.37976387757665
144
+ - task:
145
+ type: Reranking
146
+ dataset:
147
+ type: mteb/askubuntudupquestions-reranking
148
+ name: MTEB AskUbuntuDupQuestions
149
+ config: default
150
+ split: test
151
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
152
+ metrics:
153
+ - type: map
154
+ value: 60.07433334608074
155
+ - type: mrr
156
+ value: 73.44347711383723
157
+ - task:
158
+ type: STS
159
+ dataset:
160
+ type: mteb/biosses-sts
161
+ name: MTEB BIOSSES
162
+ config: default
163
+ split: test
164
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
165
+ metrics:
166
+ - type: cos_sim_pearson
167
+ value: 86.4298072183543
168
+ - type: cos_sim_spearman
169
+ value: 84.73144873582848
170
+ - type: euclidean_pearson
171
+ value: 85.15885058870728
172
+ - type: euclidean_spearman
173
+ value: 85.42062106559356
174
+ - type: manhattan_pearson
175
+ value: 84.89409921792054
176
+ - type: manhattan_spearman
177
+ value: 85.31941394024344
178
+ - task:
179
+ type: Classification
180
+ dataset:
181
+ type: mteb/banking77
182
+ name: MTEB Banking77Classification
183
+ config: default
184
+ split: test
185
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
186
+ metrics:
187
+ - type: accuracy
188
+ value: 84.14285714285714
189
+ - type: f1
190
+ value: 84.11674412565644
191
+ - task:
192
+ type: Clustering
193
+ dataset:
194
+ type: mteb/biorxiv-clustering-p2p
195
+ name: MTEB BiorxivClusteringP2P
196
+ config: default
197
+ split: test
198
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
199
+ metrics:
200
+ - type: v_measure
201
+ value: 37.600076342340785
202
+ - task:
203
+ type: Clustering
204
+ dataset:
205
+ type: mteb/biorxiv-clustering-s2s
206
+ name: MTEB BiorxivClusteringS2S
207
+ config: default
208
+ split: test
209
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
210
+ metrics:
211
+ - type: v_measure
212
+ value: 35.08861812135148
213
+ - task:
214
+ type: Retrieval
215
+ dataset:
216
+ type: BeIR/cqadupstack
217
+ name: MTEB CQADupstackAndroidRetrieval
218
+ config: default
219
+ split: test
220
+ revision: None
221
+ metrics:
222
+ - type: map_at_1
223
+ value: 32.684000000000005
224
+ - type: map_at_10
225
+ value: 41.675000000000004
226
+ - type: map_at_100
227
+ value: 42.963
228
+ - type: map_at_1000
229
+ value: 43.078
230
+ - type: map_at_3
231
+ value: 38.708999999999996
232
+ - type: map_at_5
233
+ value: 40.316
234
+ - type: mrr_at_1
235
+ value: 39.485
236
+ - type: mrr_at_10
237
+ value: 47.152
238
+ - type: mrr_at_100
239
+ value: 47.96
240
+ - type: mrr_at_1000
241
+ value: 48.010000000000005
242
+ - type: mrr_at_3
243
+ value: 44.754
244
+ - type: mrr_at_5
245
+ value: 46.285
246
+ - type: ndcg_at_1
247
+ value: 39.485
248
+ - type: ndcg_at_10
249
+ value: 46.849000000000004
250
+ - type: ndcg_at_100
251
+ value: 52.059
252
+ - type: ndcg_at_1000
253
+ value: 54.358
254
+ - type: ndcg_at_3
255
+ value: 42.705
256
+ - type: ndcg_at_5
257
+ value: 44.663000000000004
258
+ - type: precision_at_1
259
+ value: 39.485
260
+ - type: precision_at_10
261
+ value: 8.455
262
+ - type: precision_at_100
263
+ value: 1.3379999999999999
264
+ - type: precision_at_1000
265
+ value: 0.178
266
+ - type: precision_at_3
267
+ value: 19.695
268
+ - type: precision_at_5
269
+ value: 13.905999999999999
270
+ - type: recall_at_1
271
+ value: 32.684000000000005
272
+ - type: recall_at_10
273
+ value: 56.227000000000004
274
+ - type: recall_at_100
275
+ value: 78.499
276
+ - type: recall_at_1000
277
+ value: 94.021
278
+ - type: recall_at_3
279
+ value: 44.157999999999994
280
+ - type: recall_at_5
281
+ value: 49.694
282
+ - task:
283
+ type: Retrieval
284
+ dataset:
285
+ type: BeIR/cqadupstack
286
+ name: MTEB CQADupstackEnglishRetrieval
287
+ config: default
288
+ split: test
289
+ revision: None
290
+ metrics:
291
+ - type: map_at_1
292
+ value: 31.875999999999998
293
+ - type: map_at_10
294
+ value: 41.603
295
+ - type: map_at_100
296
+ value: 42.825
297
+ - type: map_at_1000
298
+ value: 42.961
299
+ - type: map_at_3
300
+ value: 38.655
301
+ - type: map_at_5
302
+ value: 40.294999999999995
303
+ - type: mrr_at_1
304
+ value: 40.127
305
+ - type: mrr_at_10
306
+ value: 47.959
307
+ - type: mrr_at_100
308
+ value: 48.59
309
+ - type: mrr_at_1000
310
+ value: 48.634
311
+ - type: mrr_at_3
312
+ value: 45.786
313
+ - type: mrr_at_5
314
+ value: 46.964
315
+ - type: ndcg_at_1
316
+ value: 40.127
317
+ - type: ndcg_at_10
318
+ value: 47.176
319
+ - type: ndcg_at_100
320
+ value: 51.346000000000004
321
+ - type: ndcg_at_1000
322
+ value: 53.502
323
+ - type: ndcg_at_3
324
+ value: 43.139
325
+ - type: ndcg_at_5
326
+ value: 44.883
327
+ - type: precision_at_1
328
+ value: 40.127
329
+ - type: precision_at_10
330
+ value: 8.72
331
+ - type: precision_at_100
332
+ value: 1.387
333
+ - type: precision_at_1000
334
+ value: 0.188
335
+ - type: precision_at_3
336
+ value: 20.637
337
+ - type: precision_at_5
338
+ value: 14.446
339
+ - type: recall_at_1
340
+ value: 31.875999999999998
341
+ - type: recall_at_10
342
+ value: 56.54900000000001
343
+ - type: recall_at_100
344
+ value: 73.939
345
+ - type: recall_at_1000
346
+ value: 87.732
347
+ - type: recall_at_3
348
+ value: 44.326
349
+ - type: recall_at_5
350
+ value: 49.445
351
+ - task:
352
+ type: Retrieval
353
+ dataset:
354
+ type: BeIR/cqadupstack
355
+ name: MTEB CQADupstackGamingRetrieval
356
+ config: default
357
+ split: test
358
+ revision: None
359
+ metrics:
360
+ - type: map_at_1
361
+ value: 41.677
362
+ - type: map_at_10
363
+ value: 52.222
364
+ - type: map_at_100
365
+ value: 53.229000000000006
366
+ - type: map_at_1000
367
+ value: 53.288000000000004
368
+ - type: map_at_3
369
+ value: 49.201
370
+ - type: map_at_5
371
+ value: 51.00599999999999
372
+ - type: mrr_at_1
373
+ value: 47.524
374
+ - type: mrr_at_10
375
+ value: 55.745999999999995
376
+ - type: mrr_at_100
377
+ value: 56.433
378
+ - type: mrr_at_1000
379
+ value: 56.464999999999996
380
+ - type: mrr_at_3
381
+ value: 53.37499999999999
382
+ - type: mrr_at_5
383
+ value: 54.858
384
+ - type: ndcg_at_1
385
+ value: 47.524
386
+ - type: ndcg_at_10
387
+ value: 57.406
388
+ - type: ndcg_at_100
389
+ value: 61.403
390
+ - type: ndcg_at_1000
391
+ value: 62.7
392
+ - type: ndcg_at_3
393
+ value: 52.298
394
+ - type: ndcg_at_5
395
+ value: 55.02
396
+ - type: precision_at_1
397
+ value: 47.524
398
+ - type: precision_at_10
399
+ value: 8.865
400
+ - type: precision_at_100
401
+ value: 1.179
402
+ - type: precision_at_1000
403
+ value: 0.134
404
+ - type: precision_at_3
405
+ value: 22.612
406
+ - type: precision_at_5
407
+ value: 15.461
408
+ - type: recall_at_1
409
+ value: 41.677
410
+ - type: recall_at_10
411
+ value: 69.346
412
+ - type: recall_at_100
413
+ value: 86.344
414
+ - type: recall_at_1000
415
+ value: 95.703
416
+ - type: recall_at_3
417
+ value: 55.789
418
+ - type: recall_at_5
419
+ value: 62.488
420
+ - task:
421
+ type: Retrieval
422
+ dataset:
423
+ type: BeIR/cqadupstack
424
+ name: MTEB CQADupstackGisRetrieval
425
+ config: default
426
+ split: test
427
+ revision: None
428
+ metrics:
429
+ - type: map_at_1
430
+ value: 25.991999999999997
431
+ - type: map_at_10
432
+ value: 32.804
433
+ - type: map_at_100
434
+ value: 33.812999999999995
435
+ - type: map_at_1000
436
+ value: 33.897
437
+ - type: map_at_3
438
+ value: 30.567
439
+ - type: map_at_5
440
+ value: 31.599
441
+ - type: mrr_at_1
442
+ value: 27.797
443
+ - type: mrr_at_10
444
+ value: 34.768
445
+ - type: mrr_at_100
446
+ value: 35.702
447
+ - type: mrr_at_1000
448
+ value: 35.766
449
+ - type: mrr_at_3
450
+ value: 32.637
451
+ - type: mrr_at_5
452
+ value: 33.614
453
+ - type: ndcg_at_1
454
+ value: 27.797
455
+ - type: ndcg_at_10
456
+ value: 36.966
457
+ - type: ndcg_at_100
458
+ value: 41.972
459
+ - type: ndcg_at_1000
460
+ value: 44.139
461
+ - type: ndcg_at_3
462
+ value: 32.547
463
+ - type: ndcg_at_5
464
+ value: 34.258
465
+ - type: precision_at_1
466
+ value: 27.797
467
+ - type: precision_at_10
468
+ value: 5.514
469
+ - type: precision_at_100
470
+ value: 0.8340000000000001
471
+ - type: precision_at_1000
472
+ value: 0.106
473
+ - type: precision_at_3
474
+ value: 13.333
475
+ - type: precision_at_5
476
+ value: 9.04
477
+ - type: recall_at_1
478
+ value: 25.991999999999997
479
+ - type: recall_at_10
480
+ value: 47.941
481
+ - type: recall_at_100
482
+ value: 71.039
483
+ - type: recall_at_1000
484
+ value: 87.32799999999999
485
+ - type: recall_at_3
486
+ value: 36.01
487
+ - type: recall_at_5
488
+ value: 40.056000000000004
489
+ - task:
490
+ type: Retrieval
491
+ dataset:
492
+ type: BeIR/cqadupstack
493
+ name: MTEB CQADupstackMathematicaRetrieval
494
+ config: default
495
+ split: test
496
+ revision: None
497
+ metrics:
498
+ - type: map_at_1
499
+ value: 17.533
500
+ - type: map_at_10
501
+ value: 24.336
502
+ - type: map_at_100
503
+ value: 25.445
504
+ - type: map_at_1000
505
+ value: 25.561
506
+ - type: map_at_3
507
+ value: 22.116
508
+ - type: map_at_5
509
+ value: 23.347
510
+ - type: mrr_at_1
511
+ value: 21.642
512
+ - type: mrr_at_10
513
+ value: 28.910999999999998
514
+ - type: mrr_at_100
515
+ value: 29.836000000000002
516
+ - type: mrr_at_1000
517
+ value: 29.907
518
+ - type: mrr_at_3
519
+ value: 26.638
520
+ - type: mrr_at_5
521
+ value: 27.857
522
+ - type: ndcg_at_1
523
+ value: 21.642
524
+ - type: ndcg_at_10
525
+ value: 28.949
526
+ - type: ndcg_at_100
527
+ value: 34.211000000000006
528
+ - type: ndcg_at_1000
529
+ value: 37.031
530
+ - type: ndcg_at_3
531
+ value: 24.788
532
+ - type: ndcg_at_5
533
+ value: 26.685
534
+ - type: precision_at_1
535
+ value: 21.642
536
+ - type: precision_at_10
537
+ value: 5.137
538
+ - type: precision_at_100
539
+ value: 0.893
540
+ - type: precision_at_1000
541
+ value: 0.127
542
+ - type: precision_at_3
543
+ value: 11.733
544
+ - type: precision_at_5
545
+ value: 8.383000000000001
546
+ - type: recall_at_1
547
+ value: 17.533
548
+ - type: recall_at_10
549
+ value: 38.839
550
+ - type: recall_at_100
551
+ value: 61.458999999999996
552
+ - type: recall_at_1000
553
+ value: 81.58
554
+ - type: recall_at_3
555
+ value: 27.328999999999997
556
+ - type: recall_at_5
557
+ value: 32.168
558
+ - task:
559
+ type: Retrieval
560
+ dataset:
561
+ type: BeIR/cqadupstack
562
+ name: MTEB CQADupstackPhysicsRetrieval
563
+ config: default
564
+ split: test
565
+ revision: None
566
+ metrics:
567
+ - type: map_at_1
568
+ value: 28.126
569
+ - type: map_at_10
570
+ value: 37.872
571
+ - type: map_at_100
572
+ value: 39.229
573
+ - type: map_at_1000
574
+ value: 39.353
575
+ - type: map_at_3
576
+ value: 34.93
577
+ - type: map_at_5
578
+ value: 36.59
579
+ - type: mrr_at_1
580
+ value: 34.071
581
+ - type: mrr_at_10
582
+ value: 43.056
583
+ - type: mrr_at_100
584
+ value: 43.944
585
+ - type: mrr_at_1000
586
+ value: 43.999
587
+ - type: mrr_at_3
588
+ value: 40.536
589
+ - type: mrr_at_5
590
+ value: 42.065999999999995
591
+ - type: ndcg_at_1
592
+ value: 34.071
593
+ - type: ndcg_at_10
594
+ value: 43.503
595
+ - type: ndcg_at_100
596
+ value: 49.120000000000005
597
+ - type: ndcg_at_1000
598
+ value: 51.410999999999994
599
+ - type: ndcg_at_3
600
+ value: 38.767
601
+ - type: ndcg_at_5
602
+ value: 41.075
603
+ - type: precision_at_1
604
+ value: 34.071
605
+ - type: precision_at_10
606
+ value: 7.843999999999999
607
+ - type: precision_at_100
608
+ value: 1.2489999999999999
609
+ - type: precision_at_1000
610
+ value: 0.163
611
+ - type: precision_at_3
612
+ value: 18.223
613
+ - type: precision_at_5
614
+ value: 13.050999999999998
615
+ - type: recall_at_1
616
+ value: 28.126
617
+ - type: recall_at_10
618
+ value: 54.952
619
+ - type: recall_at_100
620
+ value: 78.375
621
+ - type: recall_at_1000
622
+ value: 93.29899999999999
623
+ - type: recall_at_3
624
+ value: 41.714
625
+ - type: recall_at_5
626
+ value: 47.635
627
+ - task:
628
+ type: Retrieval
629
+ dataset:
630
+ type: BeIR/cqadupstack
631
+ name: MTEB CQADupstackProgrammersRetrieval
632
+ config: default
633
+ split: test
634
+ revision: None
635
+ metrics:
636
+ - type: map_at_1
637
+ value: 25.957
638
+ - type: map_at_10
639
+ value: 34.749
640
+ - type: map_at_100
641
+ value: 35.929
642
+ - type: map_at_1000
643
+ value: 36.043
644
+ - type: map_at_3
645
+ value: 31.947
646
+ - type: map_at_5
647
+ value: 33.575
648
+ - type: mrr_at_1
649
+ value: 32.078
650
+ - type: mrr_at_10
651
+ value: 39.844
652
+ - type: mrr_at_100
653
+ value: 40.71
654
+ - type: mrr_at_1000
655
+ value: 40.77
656
+ - type: mrr_at_3
657
+ value: 37.386
658
+ - type: mrr_at_5
659
+ value: 38.83
660
+ - type: ndcg_at_1
661
+ value: 32.078
662
+ - type: ndcg_at_10
663
+ value: 39.97
664
+ - type: ndcg_at_100
665
+ value: 45.254
666
+ - type: ndcg_at_1000
667
+ value: 47.818
668
+ - type: ndcg_at_3
669
+ value: 35.453
670
+ - type: ndcg_at_5
671
+ value: 37.631
672
+ - type: precision_at_1
673
+ value: 32.078
674
+ - type: precision_at_10
675
+ value: 7.158
676
+ - type: precision_at_100
677
+ value: 1.126
678
+ - type: precision_at_1000
679
+ value: 0.153
680
+ - type: precision_at_3
681
+ value: 16.743
682
+ - type: precision_at_5
683
+ value: 11.872
684
+ - type: recall_at_1
685
+ value: 25.957
686
+ - type: recall_at_10
687
+ value: 50.583
688
+ - type: recall_at_100
689
+ value: 73.593
690
+ - type: recall_at_1000
691
+ value: 91.23599999999999
692
+ - type: recall_at_3
693
+ value: 37.651
694
+ - type: recall_at_5
695
+ value: 43.626
696
+ - task:
697
+ type: Retrieval
698
+ dataset:
699
+ type: BeIR/cqadupstack
700
+ name: MTEB CQADupstackRetrieval
701
+ config: default
702
+ split: test
703
+ revision: None
704
+ metrics:
705
+ - type: map_at_1
706
+ value: 27.1505
707
+ - type: map_at_10
708
+ value: 34.844833333333334
709
+ - type: map_at_100
710
+ value: 35.95216666666667
711
+ - type: map_at_1000
712
+ value: 36.06675
713
+ - type: map_at_3
714
+ value: 32.41975
715
+ - type: map_at_5
716
+ value: 33.74233333333333
717
+ - type: mrr_at_1
718
+ value: 31.923666666666662
719
+ - type: mrr_at_10
720
+ value: 38.87983333333334
721
+ - type: mrr_at_100
722
+ value: 39.706250000000004
723
+ - type: mrr_at_1000
724
+ value: 39.76708333333333
725
+ - type: mrr_at_3
726
+ value: 36.72008333333333
727
+ - type: mrr_at_5
728
+ value: 37.96933333333334
729
+ - type: ndcg_at_1
730
+ value: 31.923666666666662
731
+ - type: ndcg_at_10
732
+ value: 39.44258333333334
733
+ - type: ndcg_at_100
734
+ value: 44.31475
735
+ - type: ndcg_at_1000
736
+ value: 46.75
737
+ - type: ndcg_at_3
738
+ value: 35.36299999999999
739
+ - type: ndcg_at_5
740
+ value: 37.242333333333335
741
+ - type: precision_at_1
742
+ value: 31.923666666666662
743
+ - type: precision_at_10
744
+ value: 6.643333333333333
745
+ - type: precision_at_100
746
+ value: 1.0612499999999998
747
+ - type: precision_at_1000
748
+ value: 0.14575
749
+ - type: precision_at_3
750
+ value: 15.875250000000001
751
+ - type: precision_at_5
752
+ value: 11.088916666666664
753
+ - type: recall_at_1
754
+ value: 27.1505
755
+ - type: recall_at_10
756
+ value: 49.06349999999999
757
+ - type: recall_at_100
758
+ value: 70.60841666666666
759
+ - type: recall_at_1000
760
+ value: 87.72049999999999
761
+ - type: recall_at_3
762
+ value: 37.60575000000001
763
+ - type: recall_at_5
764
+ value: 42.511166666666675
765
+ - task:
766
+ type: Retrieval
767
+ dataset:
768
+ type: BeIR/cqadupstack
769
+ name: MTEB CQADupstackStatsRetrieval
770
+ config: default
771
+ split: test
772
+ revision: None
773
+ metrics:
774
+ - type: map_at_1
775
+ value: 25.101000000000003
776
+ - type: map_at_10
777
+ value: 30.147000000000002
778
+ - type: map_at_100
779
+ value: 30.98
780
+ - type: map_at_1000
781
+ value: 31.080000000000002
782
+ - type: map_at_3
783
+ value: 28.571
784
+ - type: map_at_5
785
+ value: 29.319
786
+ - type: mrr_at_1
787
+ value: 27.761000000000003
788
+ - type: mrr_at_10
789
+ value: 32.716
790
+ - type: mrr_at_100
791
+ value: 33.504
792
+ - type: mrr_at_1000
793
+ value: 33.574
794
+ - type: mrr_at_3
795
+ value: 31.135
796
+ - type: mrr_at_5
797
+ value: 32.032
798
+ - type: ndcg_at_1
799
+ value: 27.761000000000003
800
+ - type: ndcg_at_10
801
+ value: 33.358
802
+ - type: ndcg_at_100
803
+ value: 37.569
804
+ - type: ndcg_at_1000
805
+ value: 40.189
806
+ - type: ndcg_at_3
807
+ value: 30.291
808
+ - type: ndcg_at_5
809
+ value: 31.558000000000003
810
+ - type: precision_at_1
811
+ value: 27.761000000000003
812
+ - type: precision_at_10
813
+ value: 4.939
814
+ - type: precision_at_100
815
+ value: 0.759
816
+ - type: precision_at_1000
817
+ value: 0.106
818
+ - type: precision_at_3
819
+ value: 12.577
820
+ - type: precision_at_5
821
+ value: 8.497
822
+ - type: recall_at_1
823
+ value: 25.101000000000003
824
+ - type: recall_at_10
825
+ value: 40.739
826
+ - type: recall_at_100
827
+ value: 60.089999999999996
828
+ - type: recall_at_1000
829
+ value: 79.768
830
+ - type: recall_at_3
831
+ value: 32.16
832
+ - type: recall_at_5
833
+ value: 35.131
834
+ - task:
835
+ type: Retrieval
836
+ dataset:
837
+ type: BeIR/cqadupstack
838
+ name: MTEB CQADupstackTexRetrieval
839
+ config: default
840
+ split: test
841
+ revision: None
842
+ metrics:
843
+ - type: map_at_1
844
+ value: 20.112
845
+ - type: map_at_10
846
+ value: 26.119999999999997
847
+ - type: map_at_100
848
+ value: 27.031
849
+ - type: map_at_1000
850
+ value: 27.150000000000002
851
+ - type: map_at_3
852
+ value: 24.230999999999998
853
+ - type: map_at_5
854
+ value: 25.15
855
+ - type: mrr_at_1
856
+ value: 24.535
857
+ - type: mrr_at_10
858
+ value: 30.198000000000004
859
+ - type: mrr_at_100
860
+ value: 30.975
861
+ - type: mrr_at_1000
862
+ value: 31.051000000000002
863
+ - type: mrr_at_3
864
+ value: 28.338
865
+ - type: mrr_at_5
866
+ value: 29.269000000000002
867
+ - type: ndcg_at_1
868
+ value: 24.535
869
+ - type: ndcg_at_10
870
+ value: 30.147000000000002
871
+ - type: ndcg_at_100
872
+ value: 34.544000000000004
873
+ - type: ndcg_at_1000
874
+ value: 37.512
875
+ - type: ndcg_at_3
876
+ value: 26.726
877
+ - type: ndcg_at_5
878
+ value: 28.046
879
+ - type: precision_at_1
880
+ value: 24.535
881
+ - type: precision_at_10
882
+ value: 5.179
883
+ - type: precision_at_100
884
+ value: 0.859
885
+ - type: precision_at_1000
886
+ value: 0.128
887
+ - type: precision_at_3
888
+ value: 12.159
889
+ - type: precision_at_5
890
+ value: 8.424
891
+ - type: recall_at_1
892
+ value: 20.112
893
+ - type: recall_at_10
894
+ value: 38.312000000000005
895
+ - type: recall_at_100
896
+ value: 58.406000000000006
897
+ - type: recall_at_1000
898
+ value: 79.863
899
+ - type: recall_at_3
900
+ value: 28.358
901
+ - type: recall_at_5
902
+ value: 31.973000000000003
903
+ - task:
904
+ type: Retrieval
905
+ dataset:
906
+ type: BeIR/cqadupstack
907
+ name: MTEB CQADupstackUnixRetrieval
908
+ config: default
909
+ split: test
910
+ revision: None
911
+ metrics:
912
+ - type: map_at_1
913
+ value: 27.111
914
+ - type: map_at_10
915
+ value: 34.096
916
+ - type: map_at_100
917
+ value: 35.181000000000004
918
+ - type: map_at_1000
919
+ value: 35.276
920
+ - type: map_at_3
921
+ value: 31.745
922
+ - type: map_at_5
923
+ value: 33.045
924
+ - type: mrr_at_1
925
+ value: 31.343
926
+ - type: mrr_at_10
927
+ value: 37.994
928
+ - type: mrr_at_100
929
+ value: 38.873000000000005
930
+ - type: mrr_at_1000
931
+ value: 38.934999999999995
932
+ - type: mrr_at_3
933
+ value: 35.743
934
+ - type: mrr_at_5
935
+ value: 37.077
936
+ - type: ndcg_at_1
937
+ value: 31.343
938
+ - type: ndcg_at_10
939
+ value: 38.572
940
+ - type: ndcg_at_100
941
+ value: 43.854
942
+ - type: ndcg_at_1000
943
+ value: 46.190999999999995
944
+ - type: ndcg_at_3
945
+ value: 34.247
946
+ - type: ndcg_at_5
947
+ value: 36.28
948
+ - type: precision_at_1
949
+ value: 31.343
950
+ - type: precision_at_10
951
+ value: 6.166
952
+ - type: precision_at_100
953
+ value: 1
954
+ - type: precision_at_1000
955
+ value: 0.13
956
+ - type: precision_at_3
957
+ value: 15.081
958
+ - type: precision_at_5
959
+ value: 10.428999999999998
960
+ - type: recall_at_1
961
+ value: 27.111
962
+ - type: recall_at_10
963
+ value: 48.422
964
+ - type: recall_at_100
965
+ value: 71.846
966
+ - type: recall_at_1000
967
+ value: 88.57000000000001
968
+ - type: recall_at_3
969
+ value: 36.435
970
+ - type: recall_at_5
971
+ value: 41.765
972
+ - task:
973
+ type: Retrieval
974
+ dataset:
975
+ type: BeIR/cqadupstack
976
+ name: MTEB CQADupstackWebmastersRetrieval
977
+ config: default
978
+ split: test
979
+ revision: None
980
+ metrics:
981
+ - type: map_at_1
982
+ value: 26.264
983
+ - type: map_at_10
984
+ value: 33.522
985
+ - type: map_at_100
986
+ value: 34.963
987
+ - type: map_at_1000
988
+ value: 35.175
989
+ - type: map_at_3
990
+ value: 31.366
991
+ - type: map_at_5
992
+ value: 32.621
993
+ - type: mrr_at_1
994
+ value: 31.028
995
+ - type: mrr_at_10
996
+ value: 37.230000000000004
997
+ - type: mrr_at_100
998
+ value: 38.149
999
+ - type: mrr_at_1000
1000
+ value: 38.218
1001
+ - type: mrr_at_3
1002
+ value: 35.046
1003
+ - type: mrr_at_5
1004
+ value: 36.617
1005
+ - type: ndcg_at_1
1006
+ value: 31.028
1007
+ - type: ndcg_at_10
1008
+ value: 37.964999999999996
1009
+ - type: ndcg_at_100
1010
+ value: 43.342000000000006
1011
+ - type: ndcg_at_1000
1012
+ value: 46.471000000000004
1013
+ - type: ndcg_at_3
1014
+ value: 34.67
1015
+ - type: ndcg_at_5
1016
+ value: 36.458
1017
+ - type: precision_at_1
1018
+ value: 31.028
1019
+ - type: precision_at_10
1020
+ value: 6.937
1021
+ - type: precision_at_100
1022
+ value: 1.346
1023
+ - type: precision_at_1000
1024
+ value: 0.22799999999999998
1025
+ - type: precision_at_3
1026
+ value: 15.942
1027
+ - type: precision_at_5
1028
+ value: 11.462
1029
+ - type: recall_at_1
1030
+ value: 26.264
1031
+ - type: recall_at_10
1032
+ value: 45.571
1033
+ - type: recall_at_100
1034
+ value: 70.246
1035
+ - type: recall_at_1000
1036
+ value: 90.971
1037
+ - type: recall_at_3
1038
+ value: 36.276
1039
+ - type: recall_at_5
1040
+ value: 41.162
1041
+ - task:
1042
+ type: Retrieval
1043
+ dataset:
1044
+ type: BeIR/cqadupstack
1045
+ name: MTEB CQADupstackWordpressRetrieval
1046
+ config: default
1047
+ split: test
1048
+ revision: None
1049
+ metrics:
1050
+ - type: map_at_1
1051
+ value: 23.372999999999998
1052
+ - type: map_at_10
1053
+ value: 28.992
1054
+ - type: map_at_100
1055
+ value: 29.837999999999997
1056
+ - type: map_at_1000
1057
+ value: 29.939
1058
+ - type: map_at_3
1059
+ value: 26.999000000000002
1060
+ - type: map_at_5
1061
+ value: 28.044999999999998
1062
+ - type: mrr_at_1
1063
+ value: 25.692999999999998
1064
+ - type: mrr_at_10
1065
+ value: 30.984
1066
+ - type: mrr_at_100
1067
+ value: 31.799
1068
+ - type: mrr_at_1000
1069
+ value: 31.875999999999998
1070
+ - type: mrr_at_3
1071
+ value: 29.267
1072
+ - type: mrr_at_5
1073
+ value: 30.163
1074
+ - type: ndcg_at_1
1075
+ value: 25.692999999999998
1076
+ - type: ndcg_at_10
1077
+ value: 32.45
1078
+ - type: ndcg_at_100
1079
+ value: 37.103
1080
+ - type: ndcg_at_1000
1081
+ value: 39.678000000000004
1082
+ - type: ndcg_at_3
1083
+ value: 28.725
1084
+ - type: ndcg_at_5
1085
+ value: 30.351
1086
+ - type: precision_at_1
1087
+ value: 25.692999999999998
1088
+ - type: precision_at_10
1089
+ value: 4.806
1090
+ - type: precision_at_100
1091
+ value: 0.765
1092
+ - type: precision_at_1000
1093
+ value: 0.108
1094
+ - type: precision_at_3
1095
+ value: 11.768
1096
+ - type: precision_at_5
1097
+ value: 8.096
1098
+ - type: recall_at_1
1099
+ value: 23.372999999999998
1100
+ - type: recall_at_10
1101
+ value: 41.281
1102
+ - type: recall_at_100
1103
+ value: 63.465
1104
+ - type: recall_at_1000
1105
+ value: 82.575
1106
+ - type: recall_at_3
1107
+ value: 31.063000000000002
1108
+ - type: recall_at_5
1109
+ value: 34.991
1110
+ - task:
1111
+ type: Retrieval
1112
+ dataset:
1113
+ type: climate-fever
1114
+ name: MTEB ClimateFEVER
1115
+ config: default
1116
+ split: test
1117
+ revision: None
1118
+ metrics:
1119
+ - type: map_at_1
1120
+ value: 8.821
1121
+ - type: map_at_10
1122
+ value: 15.383
1123
+ - type: map_at_100
1124
+ value: 17.244999999999997
1125
+ - type: map_at_1000
1126
+ value: 17.445
1127
+ - type: map_at_3
1128
+ value: 12.64
1129
+ - type: map_at_5
1130
+ value: 13.941999999999998
1131
+ - type: mrr_at_1
1132
+ value: 19.544
1133
+ - type: mrr_at_10
1134
+ value: 29.738999999999997
1135
+ - type: mrr_at_100
1136
+ value: 30.923000000000002
1137
+ - type: mrr_at_1000
1138
+ value: 30.969
1139
+ - type: mrr_at_3
1140
+ value: 26.384
1141
+ - type: mrr_at_5
1142
+ value: 28.199
1143
+ - type: ndcg_at_1
1144
+ value: 19.544
1145
+ - type: ndcg_at_10
1146
+ value: 22.398
1147
+ - type: ndcg_at_100
1148
+ value: 30.253999999999998
1149
+ - type: ndcg_at_1000
1150
+ value: 33.876
1151
+ - type: ndcg_at_3
1152
+ value: 17.473
1153
+ - type: ndcg_at_5
1154
+ value: 19.154
1155
+ - type: precision_at_1
1156
+ value: 19.544
1157
+ - type: precision_at_10
1158
+ value: 7.217999999999999
1159
+ - type: precision_at_100
1160
+ value: 1.564
1161
+ - type: precision_at_1000
1162
+ value: 0.22300000000000003
1163
+ - type: precision_at_3
1164
+ value: 13.225000000000001
1165
+ - type: precision_at_5
1166
+ value: 10.319
1167
+ - type: recall_at_1
1168
+ value: 8.821
1169
+ - type: recall_at_10
1170
+ value: 28.110000000000003
1171
+ - type: recall_at_100
1172
+ value: 55.64
1173
+ - type: recall_at_1000
1174
+ value: 75.964
1175
+ - type: recall_at_3
1176
+ value: 16.195
1177
+ - type: recall_at_5
1178
+ value: 20.678
1179
+ - task:
1180
+ type: Retrieval
1181
+ dataset:
1182
+ type: dbpedia-entity
1183
+ name: MTEB DBPedia
1184
+ config: default
1185
+ split: test
1186
+ revision: None
1187
+ metrics:
1188
+ - type: map_at_1
1189
+ value: 9.344
1190
+ - type: map_at_10
1191
+ value: 20.301
1192
+ - type: map_at_100
1193
+ value: 28.709
1194
+ - type: map_at_1000
1195
+ value: 30.470999999999997
1196
+ - type: map_at_3
1197
+ value: 14.584
1198
+ - type: map_at_5
1199
+ value: 16.930999999999997
1200
+ - type: mrr_at_1
1201
+ value: 67.25
1202
+ - type: mrr_at_10
1203
+ value: 75.393
1204
+ - type: mrr_at_100
1205
+ value: 75.742
1206
+ - type: mrr_at_1000
1207
+ value: 75.75
1208
+ - type: mrr_at_3
1209
+ value: 73.958
1210
+ - type: mrr_at_5
1211
+ value: 74.883
1212
+ - type: ndcg_at_1
1213
+ value: 56.00000000000001
1214
+ - type: ndcg_at_10
1215
+ value: 42.394
1216
+ - type: ndcg_at_100
1217
+ value: 47.091
1218
+ - type: ndcg_at_1000
1219
+ value: 54.215
1220
+ - type: ndcg_at_3
1221
+ value: 46.995
1222
+ - type: ndcg_at_5
1223
+ value: 44.214999999999996
1224
+ - type: precision_at_1
1225
+ value: 67.25
1226
+ - type: precision_at_10
1227
+ value: 33.525
1228
+ - type: precision_at_100
1229
+ value: 10.67
1230
+ - type: precision_at_1000
1231
+ value: 2.221
1232
+ - type: precision_at_3
1233
+ value: 49.417
1234
+ - type: precision_at_5
1235
+ value: 42.15
1236
+ - type: recall_at_1
1237
+ value: 9.344
1238
+ - type: recall_at_10
1239
+ value: 25.209
1240
+ - type: recall_at_100
1241
+ value: 52.329
1242
+ - type: recall_at_1000
1243
+ value: 74.2
1244
+ - type: recall_at_3
1245
+ value: 15.699
1246
+ - type: recall_at_5
1247
+ value: 19.24
1248
+ - task:
1249
+ type: Classification
1250
+ dataset:
1251
+ type: mteb/emotion
1252
+ name: MTEB EmotionClassification
1253
+ config: default
1254
+ split: test
1255
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1256
+ metrics:
1257
+ - type: accuracy
1258
+ value: 48.05
1259
+ - type: f1
1260
+ value: 43.06718139212933
1261
+ - task:
1262
+ type: Retrieval
1263
+ dataset:
1264
+ type: fever
1265
+ name: MTEB FEVER
1266
+ config: default
1267
+ split: test
1268
+ revision: None
1269
+ metrics:
1270
+ - type: map_at_1
1271
+ value: 46.452
1272
+ - type: map_at_10
1273
+ value: 58.825
1274
+ - type: map_at_100
1275
+ value: 59.372
1276
+ - type: map_at_1000
1277
+ value: 59.399
1278
+ - type: map_at_3
1279
+ value: 56.264
1280
+ - type: map_at_5
1281
+ value: 57.879999999999995
1282
+ - type: mrr_at_1
1283
+ value: 49.82
1284
+ - type: mrr_at_10
1285
+ value: 62.178999999999995
1286
+ - type: mrr_at_100
1287
+ value: 62.641999999999996
1288
+ - type: mrr_at_1000
1289
+ value: 62.658
1290
+ - type: mrr_at_3
1291
+ value: 59.706
1292
+ - type: mrr_at_5
1293
+ value: 61.283
1294
+ - type: ndcg_at_1
1295
+ value: 49.82
1296
+ - type: ndcg_at_10
1297
+ value: 65.031
1298
+ - type: ndcg_at_100
1299
+ value: 67.413
1300
+ - type: ndcg_at_1000
1301
+ value: 68.014
1302
+ - type: ndcg_at_3
1303
+ value: 60.084
1304
+ - type: ndcg_at_5
1305
+ value: 62.858000000000004
1306
+ - type: precision_at_1
1307
+ value: 49.82
1308
+ - type: precision_at_10
1309
+ value: 8.876000000000001
1310
+ - type: precision_at_100
1311
+ value: 1.018
1312
+ - type: precision_at_1000
1313
+ value: 0.109
1314
+ - type: precision_at_3
1315
+ value: 24.477
1316
+ - type: precision_at_5
1317
+ value: 16.208
1318
+ - type: recall_at_1
1319
+ value: 46.452
1320
+ - type: recall_at_10
1321
+ value: 80.808
1322
+ - type: recall_at_100
1323
+ value: 91.215
1324
+ - type: recall_at_1000
1325
+ value: 95.52000000000001
1326
+ - type: recall_at_3
1327
+ value: 67.62899999999999
1328
+ - type: recall_at_5
1329
+ value: 74.32900000000001
1330
+ - task:
1331
+ type: Retrieval
1332
+ dataset:
1333
+ type: fiqa
1334
+ name: MTEB FiQA2018
1335
+ config: default
1336
+ split: test
1337
+ revision: None
1338
+ metrics:
1339
+ - type: map_at_1
1340
+ value: 18.351
1341
+ - type: map_at_10
1342
+ value: 30.796
1343
+ - type: map_at_100
1344
+ value: 32.621
1345
+ - type: map_at_1000
1346
+ value: 32.799
1347
+ - type: map_at_3
1348
+ value: 26.491
1349
+ - type: map_at_5
1350
+ value: 28.933999999999997
1351
+ - type: mrr_at_1
1352
+ value: 36.265
1353
+ - type: mrr_at_10
1354
+ value: 45.556999999999995
1355
+ - type: mrr_at_100
1356
+ value: 46.323
1357
+ - type: mrr_at_1000
1358
+ value: 46.359
1359
+ - type: mrr_at_3
1360
+ value: 42.695
1361
+ - type: mrr_at_5
1362
+ value: 44.324000000000005
1363
+ - type: ndcg_at_1
1364
+ value: 36.265
1365
+ - type: ndcg_at_10
1366
+ value: 38.558
1367
+ - type: ndcg_at_100
1368
+ value: 45.18
1369
+ - type: ndcg_at_1000
1370
+ value: 48.292
1371
+ - type: ndcg_at_3
1372
+ value: 34.204
1373
+ - type: ndcg_at_5
1374
+ value: 35.735
1375
+ - type: precision_at_1
1376
+ value: 36.265
1377
+ - type: precision_at_10
1378
+ value: 10.879999999999999
1379
+ - type: precision_at_100
1380
+ value: 1.77
1381
+ - type: precision_at_1000
1382
+ value: 0.234
1383
+ - type: precision_at_3
1384
+ value: 23.044999999999998
1385
+ - type: precision_at_5
1386
+ value: 17.253
1387
+ - type: recall_at_1
1388
+ value: 18.351
1389
+ - type: recall_at_10
1390
+ value: 46.116
1391
+ - type: recall_at_100
1392
+ value: 70.786
1393
+ - type: recall_at_1000
1394
+ value: 89.46300000000001
1395
+ - type: recall_at_3
1396
+ value: 31.404
1397
+ - type: recall_at_5
1398
+ value: 37.678
1399
+ - task:
1400
+ type: Retrieval
1401
+ dataset:
1402
+ type: hotpotqa
1403
+ name: MTEB HotpotQA
1404
+ config: default
1405
+ split: test
1406
+ revision: None
1407
+ metrics:
1408
+ - type: map_at_1
1409
+ value: 36.847
1410
+ - type: map_at_10
1411
+ value: 54.269999999999996
1412
+ - type: map_at_100
1413
+ value: 55.152
1414
+ - type: map_at_1000
1415
+ value: 55.223
1416
+ - type: map_at_3
1417
+ value: 51.166
1418
+ - type: map_at_5
1419
+ value: 53.055
1420
+ - type: mrr_at_1
1421
+ value: 73.693
1422
+ - type: mrr_at_10
1423
+ value: 79.975
1424
+ - type: mrr_at_100
1425
+ value: 80.202
1426
+ - type: mrr_at_1000
1427
+ value: 80.214
1428
+ - type: mrr_at_3
1429
+ value: 78.938
1430
+ - type: mrr_at_5
1431
+ value: 79.595
1432
+ - type: ndcg_at_1
1433
+ value: 73.693
1434
+ - type: ndcg_at_10
1435
+ value: 63.334999999999994
1436
+ - type: ndcg_at_100
1437
+ value: 66.452
1438
+ - type: ndcg_at_1000
1439
+ value: 67.869
1440
+ - type: ndcg_at_3
1441
+ value: 58.829
1442
+ - type: ndcg_at_5
1443
+ value: 61.266
1444
+ - type: precision_at_1
1445
+ value: 73.693
1446
+ - type: precision_at_10
1447
+ value: 13.122
1448
+ - type: precision_at_100
1449
+ value: 1.5559999999999998
1450
+ - type: precision_at_1000
1451
+ value: 0.174
1452
+ - type: precision_at_3
1453
+ value: 37.083
1454
+ - type: precision_at_5
1455
+ value: 24.169999999999998
1456
+ - type: recall_at_1
1457
+ value: 36.847
1458
+ - type: recall_at_10
1459
+ value: 65.61099999999999
1460
+ - type: recall_at_100
1461
+ value: 77.792
1462
+ - type: recall_at_1000
1463
+ value: 87.17099999999999
1464
+ - type: recall_at_3
1465
+ value: 55.625
1466
+ - type: recall_at_5
1467
+ value: 60.425
1468
+ - task:
1469
+ type: Classification
1470
+ dataset:
1471
+ type: mteb/imdb
1472
+ name: MTEB ImdbClassification
1473
+ config: default
1474
+ split: test
1475
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1476
+ metrics:
1477
+ - type: accuracy
1478
+ value: 82.1096
1479
+ - type: ap
1480
+ value: 76.67089212843918
1481
+ - type: f1
1482
+ value: 82.03535056754939
1483
+ - task:
1484
+ type: Retrieval
1485
+ dataset:
1486
+ type: msmarco
1487
+ name: MTEB MSMARCO
1488
+ config: default
1489
+ split: dev
1490
+ revision: None
1491
+ metrics:
1492
+ - type: map_at_1
1493
+ value: 24.465
1494
+ - type: map_at_10
1495
+ value: 37.072
1496
+ - type: map_at_100
1497
+ value: 38.188
1498
+ - type: map_at_1000
1499
+ value: 38.232
1500
+ - type: map_at_3
1501
+ value: 33.134
1502
+ - type: map_at_5
1503
+ value: 35.453
1504
+ - type: mrr_at_1
1505
+ value: 25.142999999999997
1506
+ - type: mrr_at_10
1507
+ value: 37.669999999999995
1508
+ - type: mrr_at_100
1509
+ value: 38.725
1510
+ - type: mrr_at_1000
1511
+ value: 38.765
1512
+ - type: mrr_at_3
1513
+ value: 33.82
1514
+ - type: mrr_at_5
1515
+ value: 36.111
1516
+ - type: ndcg_at_1
1517
+ value: 25.142999999999997
1518
+ - type: ndcg_at_10
1519
+ value: 44.054
1520
+ - type: ndcg_at_100
1521
+ value: 49.364000000000004
1522
+ - type: ndcg_at_1000
1523
+ value: 50.456
1524
+ - type: ndcg_at_3
1525
+ value: 36.095
1526
+ - type: ndcg_at_5
1527
+ value: 40.23
1528
+ - type: precision_at_1
1529
+ value: 25.142999999999997
1530
+ - type: precision_at_10
1531
+ value: 6.845
1532
+ - type: precision_at_100
1533
+ value: 0.95
1534
+ - type: precision_at_1000
1535
+ value: 0.104
1536
+ - type: precision_at_3
1537
+ value: 15.204999999999998
1538
+ - type: precision_at_5
1539
+ value: 11.221
1540
+ - type: recall_at_1
1541
+ value: 24.465
1542
+ - type: recall_at_10
1543
+ value: 65.495
1544
+ - type: recall_at_100
1545
+ value: 89.888
1546
+ - type: recall_at_1000
1547
+ value: 98.165
1548
+ - type: recall_at_3
1549
+ value: 43.964
1550
+ - type: recall_at_5
1551
+ value: 53.891
1552
+ - task:
1553
+ type: Classification
1554
+ dataset:
1555
+ type: mteb/mtop_domain
1556
+ name: MTEB MTOPDomainClassification (en)
1557
+ config: en
1558
+ split: test
1559
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1560
+ metrics:
1561
+ - type: accuracy
1562
+ value: 93.86228910168718
1563
+ - type: f1
1564
+ value: 93.69177113259104
1565
+ - task:
1566
+ type: Classification
1567
+ dataset:
1568
+ type: mteb/mtop_intent
1569
+ name: MTEB MTOPIntentClassification (en)
1570
+ config: en
1571
+ split: test
1572
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1573
+ metrics:
1574
+ - type: accuracy
1575
+ value: 76.3999088007296
1576
+ - type: f1
1577
+ value: 58.96668664333438
1578
+ - task:
1579
+ type: Classification
1580
+ dataset:
1581
+ type: mteb/amazon_massive_intent
1582
+ name: MTEB MassiveIntentClassification (en)
1583
+ config: en
1584
+ split: test
1585
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1586
+ metrics:
1587
+ - type: accuracy
1588
+ value: 73.21788836583727
1589
+ - type: f1
1590
+ value: 71.4545936552952
1591
+ - task:
1592
+ type: Classification
1593
+ dataset:
1594
+ type: mteb/amazon_massive_scenario
1595
+ name: MTEB MassiveScenarioClassification (en)
1596
+ config: en
1597
+ split: test
1598
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1599
+ metrics:
1600
+ - type: accuracy
1601
+ value: 77.39071956960323
1602
+ - type: f1
1603
+ value: 77.12398952847603
1604
+ - task:
1605
+ type: Clustering
1606
+ dataset:
1607
+ type: mteb/medrxiv-clustering-p2p
1608
+ name: MTEB MedrxivClusteringP2P
1609
+ config: default
1610
+ split: test
1611
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1612
+ metrics:
1613
+ - type: v_measure
1614
+ value: 32.255379528166955
1615
+ - task:
1616
+ type: Clustering
1617
+ dataset:
1618
+ type: mteb/medrxiv-clustering-s2s
1619
+ name: MTEB MedrxivClusteringS2S
1620
+ config: default
1621
+ split: test
1622
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1623
+ metrics:
1624
+ - type: v_measure
1625
+ value: 29.66423362872814
1626
+ - task:
1627
+ type: Reranking
1628
+ dataset:
1629
+ type: mteb/mind_small
1630
+ name: MTEB MindSmallReranking
1631
+ config: default
1632
+ split: test
1633
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1634
+ metrics:
1635
+ - type: map
1636
+ value: 30.782211620375964
1637
+ - type: mrr
1638
+ value: 31.773479703044956
1639
+ - task:
1640
+ type: Retrieval
1641
+ dataset:
1642
+ type: nfcorpus
1643
+ name: MTEB NFCorpus
1644
+ config: default
1645
+ split: test
1646
+ revision: None
1647
+ metrics:
1648
+ - type: map_at_1
1649
+ value: 5.863
1650
+ - type: map_at_10
1651
+ value: 13.831
1652
+ - type: map_at_100
1653
+ value: 17.534
1654
+ - type: map_at_1000
1655
+ value: 19.012
1656
+ - type: map_at_3
1657
+ value: 10.143
1658
+ - type: map_at_5
1659
+ value: 12.034
1660
+ - type: mrr_at_1
1661
+ value: 46.749
1662
+ - type: mrr_at_10
1663
+ value: 55.376999999999995
1664
+ - type: mrr_at_100
1665
+ value: 56.009
1666
+ - type: mrr_at_1000
1667
+ value: 56.042
1668
+ - type: mrr_at_3
1669
+ value: 53.30200000000001
1670
+ - type: mrr_at_5
1671
+ value: 54.85
1672
+ - type: ndcg_at_1
1673
+ value: 44.582
1674
+ - type: ndcg_at_10
1675
+ value: 36.07
1676
+ - type: ndcg_at_100
1677
+ value: 33.39
1678
+ - type: ndcg_at_1000
1679
+ value: 41.884
1680
+ - type: ndcg_at_3
1681
+ value: 41.441
1682
+ - type: ndcg_at_5
1683
+ value: 39.861000000000004
1684
+ - type: precision_at_1
1685
+ value: 46.129999999999995
1686
+ - type: precision_at_10
1687
+ value: 26.594
1688
+ - type: precision_at_100
1689
+ value: 8.365
1690
+ - type: precision_at_1000
1691
+ value: 2.1260000000000003
1692
+ - type: precision_at_3
1693
+ value: 39.009
1694
+ - type: precision_at_5
1695
+ value: 34.861
1696
+ - type: recall_at_1
1697
+ value: 5.863
1698
+ - type: recall_at_10
1699
+ value: 17.961
1700
+ - type: recall_at_100
1701
+ value: 34.026
1702
+ - type: recall_at_1000
1703
+ value: 64.46499999999999
1704
+ - type: recall_at_3
1705
+ value: 11.242
1706
+ - type: recall_at_5
1707
+ value: 14.493
1708
+ - task:
1709
+ type: Retrieval
1710
+ dataset:
1711
+ type: nq
1712
+ name: MTEB NQ
1713
+ config: default
1714
+ split: test
1715
+ revision: None
1716
+ metrics:
1717
+ - type: map_at_1
1718
+ value: 38.601
1719
+ - type: map_at_10
1720
+ value: 55.293000000000006
1721
+ - type: map_at_100
1722
+ value: 56.092
1723
+ - type: map_at_1000
1724
+ value: 56.111999999999995
1725
+ - type: map_at_3
1726
+ value: 51.269
1727
+ - type: map_at_5
1728
+ value: 53.787
1729
+ - type: mrr_at_1
1730
+ value: 43.221
1731
+ - type: mrr_at_10
1732
+ value: 57.882999999999996
1733
+ - type: mrr_at_100
1734
+ value: 58.408
1735
+ - type: mrr_at_1000
1736
+ value: 58.421
1737
+ - type: mrr_at_3
1738
+ value: 54.765
1739
+ - type: mrr_at_5
1740
+ value: 56.809
1741
+ - type: ndcg_at_1
1742
+ value: 43.221
1743
+ - type: ndcg_at_10
1744
+ value: 62.858999999999995
1745
+ - type: ndcg_at_100
1746
+ value: 65.987
1747
+ - type: ndcg_at_1000
1748
+ value: 66.404
1749
+ - type: ndcg_at_3
1750
+ value: 55.605000000000004
1751
+ - type: ndcg_at_5
1752
+ value: 59.723000000000006
1753
+ - type: precision_at_1
1754
+ value: 43.221
1755
+ - type: precision_at_10
1756
+ value: 9.907
1757
+ - type: precision_at_100
1758
+ value: 1.169
1759
+ - type: precision_at_1000
1760
+ value: 0.121
1761
+ - type: precision_at_3
1762
+ value: 25.019000000000002
1763
+ - type: precision_at_5
1764
+ value: 17.474
1765
+ - type: recall_at_1
1766
+ value: 38.601
1767
+ - type: recall_at_10
1768
+ value: 82.966
1769
+ - type: recall_at_100
1770
+ value: 96.154
1771
+ - type: recall_at_1000
1772
+ value: 99.223
1773
+ - type: recall_at_3
1774
+ value: 64.603
1775
+ - type: recall_at_5
1776
+ value: 73.97200000000001
1777
+ - task:
1778
+ type: Retrieval
1779
+ dataset:
1780
+ type: quora
1781
+ name: MTEB QuoraRetrieval
1782
+ config: default
1783
+ split: test
1784
+ revision: None
1785
+ metrics:
1786
+ - type: map_at_1
1787
+ value: 70.77
1788
+ - type: map_at_10
1789
+ value: 84.429
1790
+ - type: map_at_100
1791
+ value: 85.04599999999999
1792
+ - type: map_at_1000
1793
+ value: 85.065
1794
+ - type: map_at_3
1795
+ value: 81.461
1796
+ - type: map_at_5
1797
+ value: 83.316
1798
+ - type: mrr_at_1
1799
+ value: 81.51
1800
+ - type: mrr_at_10
1801
+ value: 87.52799999999999
1802
+ - type: mrr_at_100
1803
+ value: 87.631
1804
+ - type: mrr_at_1000
1805
+ value: 87.632
1806
+ - type: mrr_at_3
1807
+ value: 86.533
1808
+ - type: mrr_at_5
1809
+ value: 87.214
1810
+ - type: ndcg_at_1
1811
+ value: 81.47999999999999
1812
+ - type: ndcg_at_10
1813
+ value: 88.181
1814
+ - type: ndcg_at_100
1815
+ value: 89.39200000000001
1816
+ - type: ndcg_at_1000
1817
+ value: 89.52
1818
+ - type: ndcg_at_3
1819
+ value: 85.29299999999999
1820
+ - type: ndcg_at_5
1821
+ value: 86.88
1822
+ - type: precision_at_1
1823
+ value: 81.47999999999999
1824
+ - type: precision_at_10
1825
+ value: 13.367
1826
+ - type: precision_at_100
1827
+ value: 1.5230000000000001
1828
+ - type: precision_at_1000
1829
+ value: 0.157
1830
+ - type: precision_at_3
1831
+ value: 37.227
1832
+ - type: precision_at_5
1833
+ value: 24.494
1834
+ - type: recall_at_1
1835
+ value: 70.77
1836
+ - type: recall_at_10
1837
+ value: 95.199
1838
+ - type: recall_at_100
1839
+ value: 99.37700000000001
1840
+ - type: recall_at_1000
1841
+ value: 99.973
1842
+ - type: recall_at_3
1843
+ value: 86.895
1844
+ - type: recall_at_5
1845
+ value: 91.396
1846
+ - task:
1847
+ type: Clustering
1848
+ dataset:
1849
+ type: mteb/reddit-clustering
1850
+ name: MTEB RedditClustering
1851
+ config: default
1852
+ split: test
1853
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1854
+ metrics:
1855
+ - type: v_measure
1856
+ value: 50.686353396858344
1857
+ - task:
1858
+ type: Clustering
1859
+ dataset:
1860
+ type: mteb/reddit-clustering-p2p
1861
+ name: MTEB RedditClusteringP2P
1862
+ config: default
1863
+ split: test
1864
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1865
+ metrics:
1866
+ - type: v_measure
1867
+ value: 61.3664675312921
1868
+ - task:
1869
+ type: Retrieval
1870
+ dataset:
1871
+ type: scidocs
1872
+ name: MTEB SCIDOCS
1873
+ config: default
1874
+ split: test
1875
+ revision: None
1876
+ metrics:
1877
+ - type: map_at_1
1878
+ value: 4.7379999999999995
1879
+ - type: map_at_10
1880
+ value: 12.01
1881
+ - type: map_at_100
1882
+ value: 14.02
1883
+ - type: map_at_1000
1884
+ value: 14.310999999999998
1885
+ - type: map_at_3
1886
+ value: 8.459
1887
+ - type: map_at_5
1888
+ value: 10.281
1889
+ - type: mrr_at_1
1890
+ value: 23.3
1891
+ - type: mrr_at_10
1892
+ value: 34.108
1893
+ - type: mrr_at_100
1894
+ value: 35.217
1895
+ - type: mrr_at_1000
1896
+ value: 35.272
1897
+ - type: mrr_at_3
1898
+ value: 30.833
1899
+ - type: mrr_at_5
1900
+ value: 32.768
1901
+ - type: ndcg_at_1
1902
+ value: 23.3
1903
+ - type: ndcg_at_10
1904
+ value: 20.116999999999997
1905
+ - type: ndcg_at_100
1906
+ value: 27.961000000000002
1907
+ - type: ndcg_at_1000
1908
+ value: 33.149
1909
+ - type: ndcg_at_3
1910
+ value: 18.902
1911
+ - type: ndcg_at_5
1912
+ value: 16.742
1913
+ - type: precision_at_1
1914
+ value: 23.3
1915
+ - type: precision_at_10
1916
+ value: 10.47
1917
+ - type: precision_at_100
1918
+ value: 2.177
1919
+ - type: precision_at_1000
1920
+ value: 0.34299999999999997
1921
+ - type: precision_at_3
1922
+ value: 17.567
1923
+ - type: precision_at_5
1924
+ value: 14.78
1925
+ - type: recall_at_1
1926
+ value: 4.7379999999999995
1927
+ - type: recall_at_10
1928
+ value: 21.221999999999998
1929
+ - type: recall_at_100
1930
+ value: 44.242
1931
+ - type: recall_at_1000
1932
+ value: 69.652
1933
+ - type: recall_at_3
1934
+ value: 10.688
1935
+ - type: recall_at_5
1936
+ value: 14.982999999999999
1937
+ - task:
1938
+ type: STS
1939
+ dataset:
1940
+ type: mteb/sickr-sts
1941
+ name: MTEB SICK-R
1942
+ config: default
1943
+ split: test
1944
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1945
+ metrics:
1946
+ - type: cos_sim_pearson
1947
+ value: 84.84572946827069
1948
+ - type: cos_sim_spearman
1949
+ value: 80.48508130408966
1950
+ - type: euclidean_pearson
1951
+ value: 82.0481530027767
1952
+ - type: euclidean_spearman
1953
+ value: 80.45902876782752
1954
+ - type: manhattan_pearson
1955
+ value: 82.03728222483326
1956
+ - type: manhattan_spearman
1957
+ value: 80.45684282911755
1958
+ - task:
1959
+ type: STS
1960
+ dataset:
1961
+ type: mteb/sts12-sts
1962
+ name: MTEB STS12
1963
+ config: default
1964
+ split: test
1965
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1966
+ metrics:
1967
+ - type: cos_sim_pearson
1968
+ value: 84.33476464677516
1969
+ - type: cos_sim_spearman
1970
+ value: 75.93057758003266
1971
+ - type: euclidean_pearson
1972
+ value: 80.89685744015691
1973
+ - type: euclidean_spearman
1974
+ value: 76.29929953441706
1975
+ - type: manhattan_pearson
1976
+ value: 80.91391345459995
1977
+ - type: manhattan_spearman
1978
+ value: 76.31985463110914
1979
+ - task:
1980
+ type: STS
1981
+ dataset:
1982
+ type: mteb/sts13-sts
1983
+ name: MTEB STS13
1984
+ config: default
1985
+ split: test
1986
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1987
+ metrics:
1988
+ - type: cos_sim_pearson
1989
+ value: 84.63686106359005
1990
+ - type: cos_sim_spearman
1991
+ value: 85.22240034668202
1992
+ - type: euclidean_pearson
1993
+ value: 84.6074814189106
1994
+ - type: euclidean_spearman
1995
+ value: 85.17169644755828
1996
+ - type: manhattan_pearson
1997
+ value: 84.48329306239368
1998
+ - type: manhattan_spearman
1999
+ value: 85.0086508544768
2000
+ - task:
2001
+ type: STS
2002
+ dataset:
2003
+ type: mteb/sts14-sts
2004
+ name: MTEB STS14
2005
+ config: default
2006
+ split: test
2007
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2008
+ metrics:
2009
+ - type: cos_sim_pearson
2010
+ value: 82.95455774064745
2011
+ - type: cos_sim_spearman
2012
+ value: 80.54074646118492
2013
+ - type: euclidean_pearson
2014
+ value: 81.79598955554704
2015
+ - type: euclidean_spearman
2016
+ value: 80.55837617606814
2017
+ - type: manhattan_pearson
2018
+ value: 81.78213797905386
2019
+ - type: manhattan_spearman
2020
+ value: 80.5666746878273
2021
+ - task:
2022
+ type: STS
2023
+ dataset:
2024
+ type: mteb/sts15-sts
2025
+ name: MTEB STS15
2026
+ config: default
2027
+ split: test
2028
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2029
+ metrics:
2030
+ - type: cos_sim_pearson
2031
+ value: 87.92813309124739
2032
+ - type: cos_sim_spearman
2033
+ value: 88.81459873052108
2034
+ - type: euclidean_pearson
2035
+ value: 88.21193118930564
2036
+ - type: euclidean_spearman
2037
+ value: 88.87072745043731
2038
+ - type: manhattan_pearson
2039
+ value: 88.22576929706727
2040
+ - type: manhattan_spearman
2041
+ value: 88.8867671095791
2042
+ - task:
2043
+ type: STS
2044
+ dataset:
2045
+ type: mteb/sts16-sts
2046
+ name: MTEB STS16
2047
+ config: default
2048
+ split: test
2049
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2050
+ metrics:
2051
+ - type: cos_sim_pearson
2052
+ value: 83.6881529671839
2053
+ - type: cos_sim_spearman
2054
+ value: 85.2807092969554
2055
+ - type: euclidean_pearson
2056
+ value: 84.62334178652704
2057
+ - type: euclidean_spearman
2058
+ value: 85.2116373296784
2059
+ - type: manhattan_pearson
2060
+ value: 84.54948211541777
2061
+ - type: manhattan_spearman
2062
+ value: 85.10737722637882
2063
+ - task:
2064
+ type: STS
2065
+ dataset:
2066
+ type: mteb/sts17-crosslingual-sts
2067
+ name: MTEB STS17 (en-en)
2068
+ config: en-en
2069
+ split: test
2070
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2071
+ metrics:
2072
+ - type: cos_sim_pearson
2073
+ value: 88.55963694458408
2074
+ - type: cos_sim_spearman
2075
+ value: 89.36731628848683
2076
+ - type: euclidean_pearson
2077
+ value: 89.64975952985465
2078
+ - type: euclidean_spearman
2079
+ value: 89.29689484033007
2080
+ - type: manhattan_pearson
2081
+ value: 89.61234491713135
2082
+ - type: manhattan_spearman
2083
+ value: 89.20302520255782
2084
+ - task:
2085
+ type: STS
2086
+ dataset:
2087
+ type: mteb/sts22-crosslingual-sts
2088
+ name: MTEB STS22 (en)
2089
+ config: en
2090
+ split: test
2091
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2092
+ metrics:
2093
+ - type: cos_sim_pearson
2094
+ value: 62.411800961903886
2095
+ - type: cos_sim_spearman
2096
+ value: 62.99105515749963
2097
+ - type: euclidean_pearson
2098
+ value: 65.29826669549443
2099
+ - type: euclidean_spearman
2100
+ value: 63.29880964105775
2101
+ - type: manhattan_pearson
2102
+ value: 65.00126190601183
2103
+ - type: manhattan_spearman
2104
+ value: 63.32011025899179
2105
+ - task:
2106
+ type: STS
2107
+ dataset:
2108
+ type: mteb/stsbenchmark-sts
2109
+ name: MTEB STSBenchmark
2110
+ config: default
2111
+ split: test
2112
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2113
+ metrics:
2114
+ - type: cos_sim_pearson
2115
+ value: 85.83498531837608
2116
+ - type: cos_sim_spearman
2117
+ value: 87.21366640615442
2118
+ - type: euclidean_pearson
2119
+ value: 86.74764288798261
2120
+ - type: euclidean_spearman
2121
+ value: 87.06060470780834
2122
+ - type: manhattan_pearson
2123
+ value: 86.65971223951476
2124
+ - type: manhattan_spearman
2125
+ value: 86.99814399831457
2126
+ - task:
2127
+ type: Reranking
2128
+ dataset:
2129
+ type: mteb/scidocs-reranking
2130
+ name: MTEB SciDocsRR
2131
+ config: default
2132
+ split: test
2133
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2134
+ metrics:
2135
+ - type: map
2136
+ value: 83.94448463485881
2137
+ - type: mrr
2138
+ value: 95.36291867174221
2139
+ - task:
2140
+ type: Retrieval
2141
+ dataset:
2142
+ type: scifact
2143
+ name: MTEB SciFact
2144
+ config: default
2145
+ split: test
2146
+ revision: None
2147
+ metrics:
2148
+ - type: map_at_1
2149
+ value: 59.928000000000004
2150
+ - type: map_at_10
2151
+ value: 68.577
2152
+ - type: map_at_100
2153
+ value: 69.35900000000001
2154
+ - type: map_at_1000
2155
+ value: 69.37299999999999
2156
+ - type: map_at_3
2157
+ value: 66.217
2158
+ - type: map_at_5
2159
+ value: 67.581
2160
+ - type: mrr_at_1
2161
+ value: 63
2162
+ - type: mrr_at_10
2163
+ value: 69.994
2164
+ - type: mrr_at_100
2165
+ value: 70.553
2166
+ - type: mrr_at_1000
2167
+ value: 70.56700000000001
2168
+ - type: mrr_at_3
2169
+ value: 68.167
2170
+ - type: mrr_at_5
2171
+ value: 69.11699999999999
2172
+ - type: ndcg_at_1
2173
+ value: 63
2174
+ - type: ndcg_at_10
2175
+ value: 72.58
2176
+ - type: ndcg_at_100
2177
+ value: 75.529
2178
+ - type: ndcg_at_1000
2179
+ value: 76.009
2180
+ - type: ndcg_at_3
2181
+ value: 68.523
2182
+ - type: ndcg_at_5
2183
+ value: 70.301
2184
+ - type: precision_at_1
2185
+ value: 63
2186
+ - type: precision_at_10
2187
+ value: 9.333
2188
+ - type: precision_at_100
2189
+ value: 1.09
2190
+ - type: precision_at_1000
2191
+ value: 0.11299999999999999
2192
+ - type: precision_at_3
2193
+ value: 26.444000000000003
2194
+ - type: precision_at_5
2195
+ value: 17.067
2196
+ - type: recall_at_1
2197
+ value: 59.928000000000004
2198
+ - type: recall_at_10
2199
+ value: 83.544
2200
+ - type: recall_at_100
2201
+ value: 96
2202
+ - type: recall_at_1000
2203
+ value: 100
2204
+ - type: recall_at_3
2205
+ value: 72.072
2206
+ - type: recall_at_5
2207
+ value: 76.683
2208
+ - task:
2209
+ type: PairClassification
2210
+ dataset:
2211
+ type: mteb/sprintduplicatequestions-pairclassification
2212
+ name: MTEB SprintDuplicateQuestions
2213
+ config: default
2214
+ split: test
2215
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2216
+ metrics:
2217
+ - type: cos_sim_accuracy
2218
+ value: 99.82178217821782
2219
+ - type: cos_sim_ap
2220
+ value: 95.41507679819003
2221
+ - type: cos_sim_f1
2222
+ value: 90.9456740442656
2223
+ - type: cos_sim_precision
2224
+ value: 91.49797570850203
2225
+ - type: cos_sim_recall
2226
+ value: 90.4
2227
+ - type: dot_accuracy
2228
+ value: 99.77227722772277
2229
+ - type: dot_ap
2230
+ value: 92.50123869445967
2231
+ - type: dot_f1
2232
+ value: 88.18414322250638
2233
+ - type: dot_precision
2234
+ value: 90.26178010471205
2235
+ - type: dot_recall
2236
+ value: 86.2
2237
+ - type: euclidean_accuracy
2238
+ value: 99.81782178217821
2239
+ - type: euclidean_ap
2240
+ value: 95.3935066749006
2241
+ - type: euclidean_f1
2242
+ value: 90.66128218071681
2243
+ - type: euclidean_precision
2244
+ value: 91.53924566768603
2245
+ - type: euclidean_recall
2246
+ value: 89.8
2247
+ - type: manhattan_accuracy
2248
+ value: 99.81881188118813
2249
+ - type: manhattan_ap
2250
+ value: 95.39767454613512
2251
+ - type: manhattan_f1
2252
+ value: 90.62019477191186
2253
+ - type: manhattan_precision
2254
+ value: 92.95478443743428
2255
+ - type: manhattan_recall
2256
+ value: 88.4
2257
+ - type: max_accuracy
2258
+ value: 99.82178217821782
2259
+ - type: max_ap
2260
+ value: 95.41507679819003
2261
+ - type: max_f1
2262
+ value: 90.9456740442656
2263
+ - task:
2264
+ type: Clustering
2265
+ dataset:
2266
+ type: mteb/stackexchange-clustering
2267
+ name: MTEB StackExchangeClustering
2268
+ config: default
2269
+ split: test
2270
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2271
+ metrics:
2272
+ - type: v_measure
2273
+ value: 64.96313921233748
2274
+ - task:
2275
+ type: Clustering
2276
+ dataset:
2277
+ type: mteb/stackexchange-clustering-p2p
2278
+ name: MTEB StackExchangeClusteringP2P
2279
+ config: default
2280
+ split: test
2281
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2282
+ metrics:
2283
+ - type: v_measure
2284
+ value: 33.602625720956745
2285
+ - task:
2286
+ type: Reranking
2287
+ dataset:
2288
+ type: mteb/stackoverflowdupquestions-reranking
2289
+ name: MTEB StackOverflowDupQuestions
2290
+ config: default
2291
+ split: test
2292
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2293
+ metrics:
2294
+ - type: map
2295
+ value: 51.32659230651731
2296
+ - type: mrr
2297
+ value: 52.33861726508785
2298
+ - task:
2299
+ type: Summarization
2300
+ dataset:
2301
+ type: mteb/summeval
2302
+ name: MTEB SummEval
2303
+ config: default
2304
+ split: test
2305
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2306
+ metrics:
2307
+ - type: cos_sim_pearson
2308
+ value: 31.01587644214203
2309
+ - type: cos_sim_spearman
2310
+ value: 30.974306908731013
2311
+ - type: dot_pearson
2312
+ value: 29.83339853838187
2313
+ - type: dot_spearman
2314
+ value: 30.07761671934048
2315
+ - task:
2316
+ type: Retrieval
2317
+ dataset:
2318
+ type: trec-covid
2319
+ name: MTEB TRECCOVID
2320
+ config: default
2321
+ split: test
2322
+ revision: None
2323
+ metrics:
2324
+ - type: map_at_1
2325
+ value: 0.22
2326
+ - type: map_at_10
2327
+ value: 1.9539999999999997
2328
+ - type: map_at_100
2329
+ value: 11.437
2330
+ - type: map_at_1000
2331
+ value: 27.861000000000004
2332
+ - type: map_at_3
2333
+ value: 0.6479999999999999
2334
+ - type: map_at_5
2335
+ value: 1.0410000000000001
2336
+ - type: mrr_at_1
2337
+ value: 84
2338
+ - type: mrr_at_10
2339
+ value: 90.333
2340
+ - type: mrr_at_100
2341
+ value: 90.333
2342
+ - type: mrr_at_1000
2343
+ value: 90.333
2344
+ - type: mrr_at_3
2345
+ value: 90.333
2346
+ - type: mrr_at_5
2347
+ value: 90.333
2348
+ - type: ndcg_at_1
2349
+ value: 80
2350
+ - type: ndcg_at_10
2351
+ value: 78.31700000000001
2352
+ - type: ndcg_at_100
2353
+ value: 59.396
2354
+ - type: ndcg_at_1000
2355
+ value: 52.733
2356
+ - type: ndcg_at_3
2357
+ value: 81.46900000000001
2358
+ - type: ndcg_at_5
2359
+ value: 80.74
2360
+ - type: precision_at_1
2361
+ value: 84
2362
+ - type: precision_at_10
2363
+ value: 84
2364
+ - type: precision_at_100
2365
+ value: 60.980000000000004
2366
+ - type: precision_at_1000
2367
+ value: 23.432
2368
+ - type: precision_at_3
2369
+ value: 87.333
2370
+ - type: precision_at_5
2371
+ value: 86.8
2372
+ - type: recall_at_1
2373
+ value: 0.22
2374
+ - type: recall_at_10
2375
+ value: 2.156
2376
+ - type: recall_at_100
2377
+ value: 14.557999999999998
2378
+ - type: recall_at_1000
2379
+ value: 49.553999999999995
2380
+ - type: recall_at_3
2381
+ value: 0.685
2382
+ - type: recall_at_5
2383
+ value: 1.121
2384
+ - task:
2385
+ type: Retrieval
2386
+ dataset:
2387
+ type: webis-touche2020
2388
+ name: MTEB Touche2020
2389
+ config: default
2390
+ split: test
2391
+ revision: None
2392
+ metrics:
2393
+ - type: map_at_1
2394
+ value: 3.373
2395
+ - type: map_at_10
2396
+ value: 11.701
2397
+ - type: map_at_100
2398
+ value: 17.144000000000002
2399
+ - type: map_at_1000
2400
+ value: 18.624
2401
+ - type: map_at_3
2402
+ value: 6.552
2403
+ - type: map_at_5
2404
+ value: 9.372
2405
+ - type: mrr_at_1
2406
+ value: 38.775999999999996
2407
+ - type: mrr_at_10
2408
+ value: 51.975
2409
+ - type: mrr_at_100
2410
+ value: 52.873999999999995
2411
+ - type: mrr_at_1000
2412
+ value: 52.873999999999995
2413
+ - type: mrr_at_3
2414
+ value: 47.619
2415
+ - type: mrr_at_5
2416
+ value: 50.578
2417
+ - type: ndcg_at_1
2418
+ value: 36.735
2419
+ - type: ndcg_at_10
2420
+ value: 27.212999999999997
2421
+ - type: ndcg_at_100
2422
+ value: 37.245
2423
+ - type: ndcg_at_1000
2424
+ value: 48.602000000000004
2425
+ - type: ndcg_at_3
2426
+ value: 30.916
2427
+ - type: ndcg_at_5
2428
+ value: 30.799
2429
+ - type: precision_at_1
2430
+ value: 38.775999999999996
2431
+ - type: precision_at_10
2432
+ value: 23.469
2433
+ - type: precision_at_100
2434
+ value: 7.327
2435
+ - type: precision_at_1000
2436
+ value: 1.486
2437
+ - type: precision_at_3
2438
+ value: 31.973000000000003
2439
+ - type: precision_at_5
2440
+ value: 32.245000000000005
2441
+ - type: recall_at_1
2442
+ value: 3.373
2443
+ - type: recall_at_10
2444
+ value: 17.404
2445
+ - type: recall_at_100
2446
+ value: 46.105000000000004
2447
+ - type: recall_at_1000
2448
+ value: 80.35
2449
+ - type: recall_at_3
2450
+ value: 7.4399999999999995
2451
+ - type: recall_at_5
2452
+ value: 12.183
2453
+ - task:
2454
+ type: Classification
2455
+ dataset:
2456
+ type: mteb/toxic_conversations_50k
2457
+ name: MTEB ToxicConversationsClassification
2458
+ config: default
2459
+ split: test
2460
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2461
+ metrics:
2462
+ - type: accuracy
2463
+ value: 70.5592
2464
+ - type: ap
2465
+ value: 14.330910591410134
2466
+ - type: f1
2467
+ value: 54.45745186286521
2468
+ - task:
2469
+ type: Classification
2470
+ dataset:
2471
+ type: mteb/tweet_sentiment_extraction
2472
+ name: MTEB TweetSentimentExtractionClassification
2473
+ config: default
2474
+ split: test
2475
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2476
+ metrics:
2477
+ - type: accuracy
2478
+ value: 61.20543293718167
2479
+ - type: f1
2480
+ value: 61.45365480309872
2481
+ - task:
2482
+ type: Clustering
2483
+ dataset:
2484
+ type: mteb/twentynewsgroups-clustering
2485
+ name: MTEB TwentyNewsgroupsClustering
2486
+ config: default
2487
+ split: test
2488
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2489
+ metrics:
2490
+ - type: v_measure
2491
+ value: 43.81162998944145
2492
+ - task:
2493
+ type: PairClassification
2494
+ dataset:
2495
+ type: mteb/twittersemeval2015-pairclassification
2496
+ name: MTEB TwitterSemEval2015
2497
+ config: default
2498
+ split: test
2499
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2500
+ metrics:
2501
+ - type: cos_sim_accuracy
2502
+ value: 86.69011146212075
2503
+ - type: cos_sim_ap
2504
+ value: 76.09792353652536
2505
+ - type: cos_sim_f1
2506
+ value: 70.10202763786646
2507
+ - type: cos_sim_precision
2508
+ value: 68.65671641791045
2509
+ - type: cos_sim_recall
2510
+ value: 71.60949868073878
2511
+ - type: dot_accuracy
2512
+ value: 85.33110806461227
2513
+ - type: dot_ap
2514
+ value: 70.19304383327554
2515
+ - type: dot_f1
2516
+ value: 67.22494202525122
2517
+ - type: dot_precision
2518
+ value: 65.6847935548842
2519
+ - type: dot_recall
2520
+ value: 68.83905013192611
2521
+ - type: euclidean_accuracy
2522
+ value: 86.5410979316922
2523
+ - type: euclidean_ap
2524
+ value: 75.91906915651882
2525
+ - type: euclidean_f1
2526
+ value: 69.6798975672215
2527
+ - type: euclidean_precision
2528
+ value: 67.6865671641791
2529
+ - type: euclidean_recall
2530
+ value: 71.79419525065963
2531
+ - type: manhattan_accuracy
2532
+ value: 86.60070334386363
2533
+ - type: manhattan_ap
2534
+ value: 75.94617413885031
2535
+ - type: manhattan_f1
2536
+ value: 69.52689565780946
2537
+ - type: manhattan_precision
2538
+ value: 68.3312101910828
2539
+ - type: manhattan_recall
2540
+ value: 70.76517150395777
2541
+ - type: max_accuracy
2542
+ value: 86.69011146212075
2543
+ - type: max_ap
2544
+ value: 76.09792353652536
2545
+ - type: max_f1
2546
+ value: 70.10202763786646
2547
+ - task:
2548
+ type: PairClassification
2549
+ dataset:
2550
+ type: mteb/twitterurlcorpus-pairclassification
2551
+ name: MTEB TwitterURLCorpus
2552
+ config: default
2553
+ split: test
2554
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2555
+ metrics:
2556
+ - type: cos_sim_accuracy
2557
+ value: 89.25951798812434
2558
+ - type: cos_sim_ap
2559
+ value: 86.31476416599727
2560
+ - type: cos_sim_f1
2561
+ value: 78.52709971038477
2562
+ - type: cos_sim_precision
2563
+ value: 76.7629972792117
2564
+ - type: cos_sim_recall
2565
+ value: 80.37419156144134
2566
+ - type: dot_accuracy
2567
+ value: 88.03896456708192
2568
+ - type: dot_ap
2569
+ value: 83.26963599196237
2570
+ - type: dot_f1
2571
+ value: 76.72696459492317
2572
+ - type: dot_precision
2573
+ value: 73.56411162133521
2574
+ - type: dot_recall
2575
+ value: 80.17400677548507
2576
+ - type: euclidean_accuracy
2577
+ value: 89.21682772538519
2578
+ - type: euclidean_ap
2579
+ value: 86.29306071289969
2580
+ - type: euclidean_f1
2581
+ value: 78.40827030519554
2582
+ - type: euclidean_precision
2583
+ value: 77.42250243939053
2584
+ - type: euclidean_recall
2585
+ value: 79.41946412072683
2586
+ - type: manhattan_accuracy
2587
+ value: 89.22458959133776
2588
+ - type: manhattan_ap
2589
+ value: 86.2901934710645
2590
+ - type: manhattan_f1
2591
+ value: 78.54211378440453
2592
+ - type: manhattan_precision
2593
+ value: 76.85505858079729
2594
+ - type: manhattan_recall
2595
+ value: 80.30489682784109
2596
+ - type: max_accuracy
2597
+ value: 89.25951798812434
2598
+ - type: max_ap
2599
+ value: 86.31476416599727
2600
+ - type: max_f1
2601
+ value: 78.54211378440453
2602
+ language:
2603
+ - en
2604
+ license: mit
2605
+ ---
2606
+ # # Fast-Inference with Ctranslate2
2607
+ Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
2608
+
2609
+ quantized version of [intfloat/e5-large](https://huggingface.co/intfloat/e5-large)
2610
+ ```bash
2611
+ pip install hf-hub-ctranslate2>=2.0.8 ctranslate2>=3.16.0
2612
+ ```
2613
+ Converted on 2023-06-15 using
2614
+ ```
2615
+ ct2-transformers-converter --model intfloat/e5-large --output_dir ~/tmp-ct2fast-e5-large --force --copy_files tokenizer.json README.md tokenizer_config.json vocab.txt special_tokens_map.json .gitattributes --quantization float16 --trust_remote_code
2616
+ ```
2617
+
2618
+ Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2)
2619
+ and [hf-hub-ctranslate2>=2.0.8](https://github.com/michaelfeil/hf-hub-ctranslate2)
2620
+ - `compute_type=int8_float16` for `device="cuda"`
2621
+ - `compute_type=int8` for `device="cpu"`
2622
+
2623
+ ```python
2624
+ from transformers import AutoTokenizer
2625
+
2626
+ model_name = "michaelfeil/ct2fast-e5-large"
2627
+
2628
+ from hf_hub_ctranslate2 import EncoderCT2fromHfHub
2629
+ model = EncoderCT2fromHfHub(
2630
+ # load in int8 on CUDA
2631
+ model_name_or_path=model_name,
2632
+ device="cuda",
2633
+ compute_type="int8_float16",
2634
+ # tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}")
2635
+ )
2636
+ outputs = model.generate(
2637
+ text=["def fibonnaci(", "User: How are you doing? Bot:"],
2638
+ max_length=64,
2639
+ )
2640
+ print(outputs.shape, outputs)
2641
+ ```
2642
+
2643
+ # Licence and other remarks:
2644
+ This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
2645
+
2646
+ # Original description
2647
+
2648
+
2649
+ ## E5-large
2650
+
2651
+ [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
2652
+ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
2653
+
2654
+ This model has 24 layers and the embedding size is 1024.
2655
+
2656
+ ## Usage
2657
+
2658
+ Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
2659
+
2660
+ ```python
2661
+ import torch.nn.functional as F
2662
+
2663
+ from torch import Tensor
2664
+ from transformers import AutoTokenizer, AutoModel
2665
+
2666
+
2667
+ def average_pool(last_hidden_states: Tensor,
2668
+ attention_mask: Tensor) -> Tensor:
2669
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
2670
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
2671
+
2672
+
2673
+ # Each input text should start with "query: " or "passage: ".
2674
+ # For tasks other than retrieval, you can simply use the "query: " prefix.
2675
+ input_texts = ['query: how much protein should a female eat',
2676
+ 'query: summit define',
2677
+ "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
2678
+ "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."]
2679
+
2680
+ tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large')
2681
+ model = AutoModel.from_pretrained('intfloat/e5-large')
2682
+
2683
+ # Tokenize the input texts
2684
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
2685
+
2686
+ outputs = model(**batch_dict)
2687
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
2688
+
2689
+ # (Optionally) normalize embeddings
2690
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2691
+ scores = (embeddings[:2] @ embeddings[2:].T) * 100
2692
+ print(scores.tolist())
2693
+ ```
2694
+
2695
+ ## Training Details
2696
+
2697
+ Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf).
2698
+
2699
+ ## Benchmark Evaluation
2700
+
2701
+ Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
2702
+ on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
2703
+
2704
+ ## Citation
2705
+
2706
+ If you find our paper or models helpful, please consider cite as follows:
2707
+
2708
+ ```
2709
+ @article{wang2022text,
2710
+ title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
2711
+ author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
2712
+ journal={arXiv preprint arXiv:2212.03533},
2713
+ year={2022}
2714
+ }
2715
+ ```
2716
+
2717
+ ## Limitations
2718
+
2719
+ This model only works for English texts. Long texts will be truncated to at most 512 tokens.
config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "layer_norm_epsilon": 1e-12,
5
+ "unk_token": "[UNK]"
6
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86051c2d239ce41cb82c1ab7d6100db24aabcd903fa98b86415d5181c1d4a679
3
+ size 670300108
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "amlt/1101_large_qd_prompt_lr1e4_t001_ft_random_swap_nli/all_kd_ft/checkpoint-6000", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.txt ADDED
The diff for this file is too large to render. See raw diff