michaelfeil
commited on
Commit
•
a0c1f55
1
Parent(s):
8cd49d5
Upload 14 files
Browse files- .gitattributes +13 -27
- 1_Pooling/config.json +7 -0
- README.md +104 -0
- config.json +30 -0
- config_sentence_transformers.json +7 -0
- merges.txt +0 -0
- modeling_roberta.py +188 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -1,35 +1,21 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
4 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
18 |
+
flax_model.msgpack filter=lfs diff=lfs merge=lfs -text
|
19 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
20 |
+
.git/lfs/objects/29/93/29936a7b8af6bfb56f24e9a162e586c784b05997fdb6a2fdfca3d69bf0368feb filter=lfs diff=lfs merge=lfs -text
|
21 |
+
.git/lfs/objects/6e/af/6eaf3508e4f24b3942477ea5d3b65c2a5ea3e81d2932c885c8644f43cbfc8b53 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,107 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
---
|
10 |
+
|
11 |
+
# sentence-transformers/stsb-roberta-base-v2
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('sentence-transformers/stsb-roberta-base-v2')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage (HuggingFace Transformers)
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
+
def mean_pooling(model_output, attention_mask):
|
48 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
+
|
52 |
+
|
53 |
+
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
+
|
56 |
+
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-roberta-base-v2')
|
58 |
+
model = AutoModel.from_pretrained('sentence-transformers/stsb-roberta-base-v2')
|
59 |
+
|
60 |
+
# Tokenize sentences
|
61 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
# Compute token embeddings
|
64 |
+
with torch.no_grad():
|
65 |
+
model_output = model(**encoded_input)
|
66 |
+
|
67 |
+
# Perform pooling. In this case, max pooling.
|
68 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/stsb-roberta-base-v2)
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
## Full Model Architecture
|
85 |
+
```
|
86 |
+
SentenceTransformer(
|
87 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel
|
88 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
89 |
+
)
|
90 |
+
```
|
91 |
+
|
92 |
+
## Citing & Authors
|
93 |
+
|
94 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
95 |
+
|
96 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
97 |
+
```bibtex
|
98 |
+
@inproceedings{reimers-2019-sentence-bert,
|
99 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
100 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
101 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
102 |
+
month = "11",
|
103 |
+
year = "2019",
|
104 |
+
publisher = "Association for Computational Linguistics",
|
105 |
+
url = "http://arxiv.org/abs/1908.10084",
|
106 |
+
}
|
107 |
+
```
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "old_models/stsb-roberta-base-v2/0_Transformer",
|
3 |
+
"architectures": [
|
4 |
+
"HFAdaptedRoBERTaHeadless"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_roberta.HFAdaptedRoBERTaConfig",
|
8 |
+
"AutoModel": "modeling_roberta.HFAdaptedRoBERTaHeadless"
|
9 |
+
},
|
10 |
+
"attention_probs_dropout_prob": 0.1,
|
11 |
+
"bos_token_id": 0,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"gradient_checkpointing": false,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.1,
|
16 |
+
"hidden_size": 768,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"layer_norm_eps": 1e-05,
|
20 |
+
"max_position_embeddings": 514,
|
21 |
+
"model_type": "roberta-custom",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 1,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"transformers_version": "4.7.0",
|
27 |
+
"type_vocab_size": 1,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 50265
|
30 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_roberta.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import PretrainedConfig
|
6 |
+
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
7 |
+
|
8 |
+
from fms.models.hf.lm_head_mixins import (
|
9 |
+
MaskedLMHeadMixin,
|
10 |
+
SequenceClassificationLMHeadMixin,
|
11 |
+
)
|
12 |
+
from fms.models.hf.modeling_hf_adapter import HFEncoder, HFEncoderModelArchitecture
|
13 |
+
from fms.models.roberta import RoBERTa, RoBERTaConfig, RoBERTaHeadless
|
14 |
+
|
15 |
+
|
16 |
+
class HFAdaptedRoBERTaConfig(PretrainedConfig):
|
17 |
+
model_type = "hf_adapted_roberta"
|
18 |
+
|
19 |
+
attribute_map = {
|
20 |
+
"vocab_size": "src_vocab_size",
|
21 |
+
"hidden_size": "emb_dim",
|
22 |
+
"num_attention_heads": "nheads",
|
23 |
+
"num_hidden_layers": "nlayers",
|
24 |
+
"tie_word_embeddings": "tie_heads",
|
25 |
+
}
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
src_vocab_size=None,
|
30 |
+
emb_dim=None,
|
31 |
+
nheads=12,
|
32 |
+
nlayers=12,
|
33 |
+
max_pos=512,
|
34 |
+
pad_token_id=1,
|
35 |
+
hidden_grow_factor=4,
|
36 |
+
activation_fn="gelu",
|
37 |
+
classifier_activation_fn="tanh",
|
38 |
+
p_dropout=0.1,
|
39 |
+
classifier_dropout=0.1,
|
40 |
+
use_cache=True,
|
41 |
+
num_labels=1,
|
42 |
+
norm_eps=1e-12,
|
43 |
+
tie_heads=False,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
self.src_vocab_size = src_vocab_size
|
47 |
+
self.emb_dim = emb_dim
|
48 |
+
self.nheads = nheads
|
49 |
+
self.nlayers = nlayers
|
50 |
+
self.max_pos = max_pos
|
51 |
+
self.hidden_grow_factor = hidden_grow_factor
|
52 |
+
if activation_fn.lower() not in ["gelu", "relu", "mish", "swish"]:
|
53 |
+
raise ValueError(
|
54 |
+
"activation function must be one of gelu, relu, mish, swish"
|
55 |
+
)
|
56 |
+
self.activation_fn = activation_fn
|
57 |
+
self.p_dropout = p_dropout
|
58 |
+
self.classifier_dropout = classifier_dropout
|
59 |
+
self.use_cache = use_cache
|
60 |
+
self.norm_eps = norm_eps
|
61 |
+
self.classifier_activation_fn = classifier_activation_fn
|
62 |
+
self.tie_heads = tie_heads
|
63 |
+
super().__init__(
|
64 |
+
pad_token_id=pad_token_id,
|
65 |
+
num_labels=num_labels,
|
66 |
+
tie_word_embeddings=kwargs.pop("tie_word_embeddings", tie_heads),
|
67 |
+
**kwargs,
|
68 |
+
)
|
69 |
+
|
70 |
+
@classmethod
|
71 |
+
def from_pretrained(
|
72 |
+
cls, pretrained_model_name_or_path, **kwargs
|
73 |
+
) -> "PretrainedConfig":
|
74 |
+
config_dict, kwargs = cls.get_config_dict(
|
75 |
+
pretrained_model_name_or_path, **kwargs
|
76 |
+
)
|
77 |
+
|
78 |
+
return cls.from_dict(config_dict, **kwargs)
|
79 |
+
|
80 |
+
@classmethod
|
81 |
+
def from_fms_config(cls, config: RoBERTaConfig, **hf_kwargs):
|
82 |
+
config_dict = config.as_dict()
|
83 |
+
config_dict["pad_token_id"] = config_dict.pop("pad_id")
|
84 |
+
return cls.from_dict(config_dict, **hf_kwargs)
|
85 |
+
|
86 |
+
|
87 |
+
class HFAdaptedRoBERTaEncoder(HFEncoder):
|
88 |
+
"""Adapter for the Roberta Encoder"""
|
89 |
+
|
90 |
+
def __init__(self, model: RoBERTaHeadless, config: PretrainedConfig):
|
91 |
+
super().__init__(model, config, attention_mask_dim=3)
|
92 |
+
|
93 |
+
def _adapt(
|
94 |
+
self,
|
95 |
+
input_ids: Optional[torch.LongTensor] = None,
|
96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
97 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
98 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
99 |
+
output_attentions: Optional[bool] = None,
|
100 |
+
output_hidden_states: Optional[bool] = None,
|
101 |
+
position_ids: Optional[torch.LongTensor] = None,
|
102 |
+
*args,
|
103 |
+
**kwargs,
|
104 |
+
) -> BaseModelOutputWithPastAndCrossAttentions:
|
105 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
106 |
+
last_hidden_state=self.model(
|
107 |
+
x=input_ids, mask=attention_mask, position_ids=position_ids
|
108 |
+
)
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
class HFAdaptedRoBERTaHeadless(HFEncoderModelArchitecture):
|
113 |
+
# attributes required by HF
|
114 |
+
config_class = HFAdaptedRoBERTaConfig
|
115 |
+
base_model_prefix = "hf_adapted_roberta"
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
config: PretrainedConfig,
|
120 |
+
encoder: Optional[RoBERTaHeadless] = None,
|
121 |
+
embedding: Optional[nn.Module] = None,
|
122 |
+
*args,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
# in the case we have not yet received the encoder/decoder/embedding, initialize it here
|
126 |
+
if encoder is None or embedding is None:
|
127 |
+
params = config.to_dict()
|
128 |
+
model = RoBERTa(pad_id=params.pop("pad_token_id"), **params)
|
129 |
+
encoder = model.base_model if encoder is None else encoder
|
130 |
+
embedding = model.base_model.embedding if embedding is None else embedding
|
131 |
+
|
132 |
+
# these are now huggingface compatible
|
133 |
+
encoder = HFAdaptedRoBERTaEncoder(encoder, config)
|
134 |
+
super().__init__(encoder, embedding, config, *args, **kwargs)
|
135 |
+
|
136 |
+
|
137 |
+
class HFAdaptedRoBERTaForMaskedLM(MaskedLMHeadMixin, HFAdaptedRoBERTaHeadless):
|
138 |
+
def __init__(self, config: HFAdaptedRoBERTaConfig, *args, **kwargs):
|
139 |
+
super().__init__(
|
140 |
+
config=config,
|
141 |
+
activation_fn=config.activation_fn,
|
142 |
+
norm_eps=config.norm_eps,
|
143 |
+
*args,
|
144 |
+
**kwargs,
|
145 |
+
)
|
146 |
+
|
147 |
+
@classmethod
|
148 |
+
def _hf_model_from_fms(
|
149 |
+
cls, model: RoBERTa, config: HFAdaptedRoBERTaConfig
|
150 |
+
) -> "HFAdaptedRoBERTaForMaskedLM":
|
151 |
+
return cls(
|
152 |
+
config=config,
|
153 |
+
encoder=model.base_model,
|
154 |
+
embedding=model.base_model.embedding,
|
155 |
+
lm_head=model.classification_head,
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
class HFAdaptedRoBERTaForSequenceClassification(
|
160 |
+
SequenceClassificationLMHeadMixin, HFAdaptedRoBERTaHeadless
|
161 |
+
):
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
config: HFAdaptedRoBERTaConfig,
|
165 |
+
encoder: Optional[nn.Module] = None,
|
166 |
+
embedding: Optional[nn.Module] = None,
|
167 |
+
*args,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
super().__init__(
|
171 |
+
config=config,
|
172 |
+
classifier_activation_fn=config.classifier_activation_fn,
|
173 |
+
classifier_dropout=config.classifier_dropout,
|
174 |
+
encoder=encoder,
|
175 |
+
embedding=embedding,
|
176 |
+
*args,
|
177 |
+
**kwargs,
|
178 |
+
)
|
179 |
+
|
180 |
+
@classmethod
|
181 |
+
def _hf_model_from_fms(
|
182 |
+
cls, model: RoBERTa, config: HFAdaptedRoBERTaConfig
|
183 |
+
) -> "HFAdaptedRoBERTaForSequenceClassification":
|
184 |
+
return cls(
|
185 |
+
config=config,
|
186 |
+
encoder=model.base_model,
|
187 |
+
embedding=model.base_model.embedding,
|
188 |
+
)
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:417c0e9ea35a21ead76cb2fe422b51ff7fbd2a206654754753ddc6b27a17ba7c
|
3 |
+
size 498661169
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 75,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "old_models/stsb-roberta-base-v2/0_Transformer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|